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Abstract

This paper aims to extend Graph Convolution Networks (GCN) using findings from alge-
braic geometry and gauge theory involving Dynkin quivers and Gabriel’s theorem on ADE
classification. We propose the construction of a “universal” graph kernel formalized as an
ADE gauge quiver, to be used for generic classification tasks with architecture and train-
ing methods inspired by diffusion on Sheaf Neural Networks (SNN). After validating this
framework with experiments, we flesh out theory motivating these design choices, namely
an error or residue estimation formulated in terms of a symplectic monodromy group.
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1 ADE Gauge Equivariant Convolution

1.1 Overview

This paper aims to gather and organize speculative relationships between the following research:

• Neural sheaf diffusion in graph convolutional networks [Bod+22]

• Gabriel’s theorem on representations of ADE quivers and Gauge quivers [nLa22],

• Nodal surplus and graph cycles via magnetic perturbation of eigenfunctions [Ber13],

• Gromov p-widths describing non-linear spectra and isoperimetric volume bounds [Gro88].

To begin, we claim an equivalence between Sheaf Neural Networks (§2.5) and representations
of quivers (§2.1) by relaxing constraints on a sheaf connection Laplacian to no longer be strictly
positive semi-definite. By allowing the connection Laplacian to have an indefinite form with
positive, zero, or negative eigenvalues, we prevent the “gluing” axiom of sheaves from holding
and instead have a presheaf, which can more readily be equated to a quiver representation
(§2.7). In the context of classification tasks, the gluing axiom of sheaves is necessary to allow
for simple diffusion by forming restriction maps between all pairwise node combinations (§2.6).
However, when an indefinite connection Laplacian and disconnected presheaf takes on values
from an algebraically closed field, we may instead derive an equality with quiver representations
(§2.7). Then, by invoking Gabriel’s Theorem, we find that all finite quiver representations
(equivalently, all presheaf connection Laplacians) must have underlying connected subgraphs
that can be classified with ADE types (§2.2). Thus, Gabriel’s Theorem enables restoring a
weaker gluing axiom and a modified diffusion mechanism by using tree subgraphs and the nodal
surplus of cycles. In this alternative setting, the connection Laplacian becomes more akin to
a graph convolution kernel (§2.9). The proposed ADE subgraphs are bipartite trees and were
originally developed to describe relationships between irreducible representations (irreps) and
root systems of simply connected Lie groups: SL(N+1), SU(2N), E6, E7, E8. Using spectral
analysis, namely Perron-Frobenius theorem, we may classify subtrees into their ADE type using
their unique bounded spectral radius λr ≤ 2 (§2.12).

To formulate an alternative to sheaf diffusion, we need information about the non-trivial topol-
ogy that results from a graphs cycles not captured by its ADE subtrees. A relevant stream of
research also applies spectral methods through magnetic field perturbations to a graph Lapla-
cian in order to compute its nodal surplus, which directly relates to a graphs cyclic structure
(§2.10). Transitioning from an arbitrary graph to a collection of trees requires breaking β cy-
cles, where β = |E| − |V |+ 1 is the graph’s first Betti number, which will be considered as the
rank 1 perturbations. It is known that the n-th eigenfunction of a Laplacian has (n − 1 + s)
“zeroes”, where a zero corresponds to graph edges where the eigenfunction changes sign and
s is the nodal surplus or defect, which is an integer between 0 and the number of cycles. The
examined method induces perturbations on a Laplacian using a magnetic field (i.e. a dis-
cretized Schrodinger operator) parameterized by its eigenvalues in what’s known as a magnetic
Laplacian. The fundamental result proves that the Morse index of the critical points of the
perturbation field are equal to the nodal surplus of the original graph. The process of diffu-
sion on the connection Laplacian and the application of Morse theory on critical points of the
magnetic Laplacian have close similarities when studying the Hessian of each Laplacian as a
mediator of covariance (§2.11).
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Relating the two findings we aim to develop a graph kernel that captures a rich and invariant
representation of both the graphs subtrees and its cycles. We propose a kernel that can be
thought of as a histogram of the simply-connected Lie groups corresponding to ADE trees along
with a symplectic monodromy group that captures the nodal surplus and their relations to the
magnetic Laplacian zeroes. A monodromy group is the quotient of holonomy group (roughly,
its nontrivial cycles) by the normal subgroup formed by parallel transports along homotopically
trivial loops (roughly, its ADE trees). This graph kernel made of ADE trees and a symplectic
monodromy group can be succinctly described as a gauge quiver or quiver diagram (§2.4).
Training data produces a monodromy group of divergences from energy minimizing geodesics
between irreps on the quiver. Recall that relaxing the strictly non-zero constraint on eigenvalues
of the connection Laplacian leads us to Gabriel’s theorem of ADE tree classification, while
relaxing the constraint on linearity of an eigenvector by considering non-linear perturbations
of an eigenfunction leads to topological information about a graph’s nodal surplus and cyclic
structure. We may examine the nonlinearity and indefiniteness of the spectra in both settings
by considering a device known as a Gromov width or p-width (§2.13). This width is proposed to
be interpreted as nonlinear spectra of a Laplacian and can be used to bound volume spectrum
in an isoperimetric law. In a learning mechanism, this is used to limit the number of ADE trial
graphs in a random-walk type graph kernel. This is presented in more detail in the following
section.

1.2 Architecture

1.3 Experiments

2 Appendix A: Theory and Intuitions

2.1 Quiver Representations

Although it is straightforward to say that quivers are identical to directed graphs, their useful-
ness arises from a change in perspective that allows formulating connections between simplicial
graphs and continuous topology through representation theory and categorical set theory. We
may motivate this less intuitive viewpoint by recalling Grothendieck’s notion of relative point
of view, where instead of holding up individual objects, one works with families of objects or
categories that depend on a creatively constructed parameterization.
Definition 2.1. Formally, a quiver is given by Q = (Q0, Q1, s, t), where Q0, Q1 are finite sets
with Q0 being vertices, Q1 being arrows corresponding to edges, and s, t : Q1 → Q0 being
maps referred to as the source and target sets of a given edge. An arrow α ∈ Q1 is written as
α : s(α)→ t(α).

With this change in perspective, we allow vertices Q0 to become fundamental while edges Q1

become closer to categorical sets. The quiver Q can be perceived as something more akin to a
point cloud than a graph; though instead of the points being embedded in a topological space
like R3, they are embedded in an algebraic field. Edges being referred to as arrows suggests
a categorical parameterization, so that they relate sets (or equivalence classes) of what were
formerly scalar values. An underlying graph Q̄ can be recovered by indexing into subset of the
output of adjacent pairs of surjective mappings s, t applied to an arrow {s(α), t(α)}.
Definition 2.2. A quiver representation M = (Mx,Mα) is given by vector spaces Mx for
vertex x ∈ Q0 and linear maps Mα : Ms(α) →Mt(α).
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A representation of a quiver Q is an association of an R-module to each vertex of Q and a
morphism between each module for each arrow. Continuing the previous analogy, a quiver
thought of as an algebraic point cloud now also takes on a topological embedding (similar to
real point clouds) using its linear or fibered representations. A representation is said to be
decomposable if it is isomorphic to the direct sum of non-zero representations. This notion is
closely related to irreducibility of group generators and root systems,

In categorical terms, we can define a quiver to be a functor G : Xop → Set, where Xop is the
category with objects 0, 1 and two morphisms s, t : 1 → 0, along with identity morphisms.
This lets us define Quiv as the category of presheaves on X, where objects are functors and
morphisms are natural transformations between such functors. Then a representation of Q
is a covariant functor from this category to the category of finite dimensional vector spaces.
Morphisms between representations commute with arrows allowing for representations to also
be considered an Abelian category.

2.2 Dynkin Diagrams

The initial ambitions of representation theory were to construct lists of all the indecomposable
representations when possible, and only after to consider homomorphisms and extensions be-
tween the indecomposable objects. It turns out that the list of indecomposables is typically
quite uninteresting, and instead, describing the internal categorical structure and the inter-
play between indecomposable representations would yield much deeper insights. In order to
do so, one may look at sets of indecomposables which are related either by small changes of
parameters or by the existence of irreducible maps. The interplay and binding of particular
irreducible representations can be understood as an algebra or even a dynamical system in a
differential setting as with Lie Groups. Then, the periodic cycles, orbits, or automorphisms are
the algebraic structures that bind irreducible representations to a group structure.

Dynkin diagrams first appeared in relation to the classification of simple Lie groups where they
describe a basis of roots for a path algebra that spans a complex semi-simple Lie algebra or a
compact Lie algebra and its corresponding simply laced Lie groups. P. Gabriel introduced the
notion of a quiver and its representations and used them to prove the famous Gabriel’s theorem
on representations of quivers over algebraically closed field.
Theorem 2.1. Let Q be a finite quiver and Q̄ the undirected graph obtained from Q by deleting
the orientation of all arrows. A connected quiver Q is of finite type if and only if the graph Q̄
is one of the following simply laced Dynkin diagrams: An, Dn, E6, E7 or E8.

2.3 ADE Classification

Dynkin diagrams have the following correspondence with the Lie algebras associated to classi-
cal groups over the complex numbers. ADE types have additional compact Lie algebras and
corresponding simply laced Lie groups:

• An: sln+1(C), the special linear Lie algebra of traceless operators. Also corresponds to
sun+1(R), the algebra of the special unitary group SU(n+ 1).

• Bn: so2n+1(C), the odd-dimensional special orthogonal Lie algebra.

• Cn: sp2n(C), the symplectic Lie algebra.
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• Dn: so2n(C), the even-dimensional special orthogonal Lie algebra (n > 1) of even-
dimensional skew-symmetric operators. Also corresponds to so2n(R), the algebra of the
even projective special orthogonal group PSO(2n)

• E6, E7, E8: the names for the exceptional Lie groups and algebras coincide with the
associated Dynkin diagram.

The graphs describes a finite reflection group with each node representing a reflection satisfying
relations depicted as (labeled) edges. The edges in the graphs show that two fundamental roots
are not orthogonal (perpendicular) but differ by 120 degrees or 2π/3. We can consider repeated
reflective action as an exponential rotation of (2π/3)k that yields equivalences between self or
pairs. These self or pairwise interactions with exponents of 2 have no edge. Interactions with
exponents of 3 have labels omitted. Repeated reflections resulting in the identity (periodic
automorphisms) are shown to be equivalent to commutativity between pairs of generators (See
§3.2).

We can think of the diagrams as a topological group being condensed or encoded into a graph de-
picting interactions of its generators, which are its irreducible representations or roots. Dynkin
diagrams summarize relative orientations and orderings of these roots through a kaleidoscopic
construction that describe its topology in terms of the graphs path algebra. Omitting certain
edges produces a diagram corresponding to an orthogonal summation of a groups irreducible
root systems.

2.4 Gauge Quivers

Definition 2.3. A quiver gauge theory is given by the following:

• Finite quiver Q

• Each vertex v ∈ V(Q) corresponds to a compact Lie group Gv. This may be the uni-
tary group U(N), the special unitary group SU(N), special orthogonal group SO(N) or
symplectic group USp(N) corresponding to ADE classes.

• The gauge group is the product
∏
v∈V(Q)Gv.

• Each edge of Q, e : u → v, corresponds to the defining representation N̄u ⊗ Nv. This
representation is called a bifundamental representation.

The gauge quiver is particularly convenient for representing conformal gauge theory.

2.5 Sheaf Neural Networks

A Sheaf Neural Network is a type of Graph Neural Network that operates on a sheaf, an object
that equips a graph with vector spaces over its nodes and edges and linear maps between these
spaces.
Definition 2.4. A cellular sheaf (G,F) on an undirected graph G = (V,E) consists of:

• A vector space F(v) for each v ∈ V ,

• A vector space F(e) for each e ∈ E,

• A linear map FvEe : F(v)→ F(e) for each incident node-edge pair v E e.
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This definition closely resembles that of the quiver representation, though there is an additional
vector space equipped to each edge and linear maps explicitly given between each pair of nodes.
This allows the presheaf corresponding to the quiver representation to be promoted into a sheaf
by satisfying an additional ”gluing” axiom.

The vector spaces of the node and edges are called stalks, while the linear maps are called
restriction maps. It is possible to group the various spaces by interpreting the graph as a
1-dimensional simplicial complex. In this setting, the 0-dimensional simplicies correspond to
nodes and the 1-dimensional simplicies are edges. A p-chain of a simplicial complex is the sum
of its p dimensional simplicies. For a graph, the 0-chains are aggregation of nodes and 1-chains
are aggregations of edges. Likewise, the dual space formed by the node stalks is called the space
of 0-cochains, while the dual space formed by edge stalks is called the space of 1-cochains.
Definition 2.5. Given a sheaf (G,F), we define the space of 0-cochains C0(G,F ) as the direct
sum over the vertex stalks C0(G,F ) := ⊕v∈V F(v). Similarly, the space of 1-cochains C1(G,F )
as the direct sum over the edge stalks C1(G,F ) := ⊕e∈EF(e).
Definition 2.6. Given some arbitrary orientation for each edge e = u→ v, e ∈ E, we define the
coboundary map δ : C0(G,F )→ C1(G,F ) as δ(x)e = FvEexv −FuEexu. Here x ∈ C0(G,F ) is
a 0-cochain and xv ∈ F(v) is the vector of x at the node stalk F(v).

A p-boundary is considered to be the aggregation of p-simplicies in a p-chain that takes p-chains
to p+ 1-chains. A p-coboundary is a dual homomorphism that that takes p-cochains to p+ 1-
cochains. From an opinion dynamics perspective (Hansen & Ghrist, 2021), the node stalks may
be thought of as the private space of opinions and the edge stalks as the space in which these
opinions are shared in a public discourse space. The coboundary map δ then measures the
disagreement between all the nodes.

A p-cycle describes a loop resulting from a closed p-chain. A homology group is defined by
quotienting the group of p-cycles Zp by the group of p-boundaries Bp, i.e. Hp = Zp/Bp.
Similarly the cohomology group can be defined as a quotient of p-cocycles and p-coboundaries,
i.e. Hp = Zp/Bp. This will be relevant in later sections involving symplectic cyclic geometry.
Recall the previous notion of Dynkin quiver representations having Ext2 = 0, this would be
equivalent to having empty cohomology, meaning the group of coboundaries would be infinite or
the group of cycles is empty. Conversely, we may use this restriction to categorize the manner
in which the data diverges from being acyclic or a tree quiver.

The sheaf Laplacian operator is a symmetric positive semi-definite block matrix resulting from
multiplication of the the co-boundary operator by its transpose. By making the sheaf laplacian
symmetric, we force the “gluing” axiom to be true, and enable the pre-sheaf to become a sheaf.
This also means the sheaf has a similar undirected nature as the underlying graph and makes
spectral analysis possible.
Definition 2.7. The sheaf Laplacian of a sheaf is a map LF : C0(G,F) → C0(G,F) defined

as LF = δT δ. The normalised sheaf Laplacian ∆F is defined as ∆F = D−
1
2LFD−

1
2 where D

is the blockdiagonal of LF .

If we constrain the restriction maps in the sheaf to belong to the orthogonal group, the sheaf
becomes a discrete O(d)-bundle and can be thought of as a discretised version of a tangent
bundle on a manifold. The sheaf Laplacian of the O(d)-bundle is equivalent to a connection
Laplacian used by Singer & Wu (2012). The orthogonal restriction maps describe how vectors
are rotated when transported between stalks, in a way analogous to the transportation of
tangent vectors on a manifold.
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2.6 Neural Sheaf Diffusion

Consider a graph G = (V,E) where each node v ∈ V has a d-dimensional feature vector xv ∈
F(v). We construct an nd-dimensional vector x ∈ C0(G,F ) by column-stacking the individual
vectors xv. Allowing for f feature channels, we produce the feature matrix X ∈ R(nd)×f . The
columns of X are vectors in C0(G,F ), one for each of the f channels. Sheaf diffusion is a
process on (G,F ) governed by the following discreted diffusion equation:

Xt+1 = Xt − σ(∆F(t)In ⊗W t
1)XtW

t
2 (1)

It is important to note that the sheaf F(t) and the weights W t
1 ,W

t
2 are time-dependent, meaning

that the underlying “geometry” evolves over time. The diffusion of features into the kernel of
the laplacian can be understood as convolution of adjacent nodes in which the sheaf serves as
a multi-headed attention mechanism.

2.7 Equivalence of presheaves and quiver representations

By relaxing constraints on the sheaf Laplacian being symmetric positive semi-definite and
omitting constraints on the restriction maps, we can construct an equivalence between a pre-
sheaf and a finite quiver representation. To maintain the symmetry of the presheaf Laplacian
we need only to require that that its associated underlying Dynkin graph be strongly connected
and undirected.

2.8 Sheafification

We may observe that the sheaves on X form a full subcategory of the presheaves on X. Im-
plicitly the morphisms of sheaves are nothing more than natural transformations of the sheaves
considered as functors. Therefore, we get an abstract characterisation of sheafification as left
adjoint to the inclusion.

There are two ways a presheaf can fail to be a sheaf.

1. It has local sections that should patch together to give a global section, but don’t,

2. It has non-zero sections which are locally zero.

In the classical case of sheaves on a topological space, sheafification of the Yoneda embedding
preserves colimits by open covers. In the general case of categories, one replaces open covers
with covering sieves to develop a Grothendieck Topology.

2.9 Graph convolution kernel

Random walk kernel is a direct product of a pair of graphs used to count paths from random
walks on graph pairs. In the WL kernel, multiple rounds of WL algorithm computes similarity
as inner product of histogram vectors. Kernel collects number of times color occurs in graph
on iteration Diffusion is continous time limit of random walk, using cartesian product instead
of kronecker product allows for decomposition. Paths are a special kind of subgraphs that work
using kronecker optimization tricks. Cycles or trees, i.e. anything between arbitrary subgraph
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and simple paths is an unsolved problem for optimization. Subgraph isomorphism is known to
be np-hard.

2.10 Magnetic Laplacian and nodal surplus

Pending summary of [Ber13].

2.11 Correspondences from Hessian

A matrix is positive definite iff it defines an inner product. Inner products induces associated
norm, and a norm induces a distance called its (norm) induced metric. Positive-definite and
positive-semidefinite real matrices are at the basis of convex optimization Given a function of
several real variables that is twice differentiable, then if its Hessian matrix (matrix of its second
partial derivatives) is positive-definite at a point p, then the function is convex near p, and,
conversely, if the function is convex near p, then the Hessian matrix is positive-semidefinite at
p.

2.12 Correspondences from spectral analysis

Pending summary of [Dok+14], explicit computation of Perron-Frobenius vectors and spectral
bounds of the Dynkin graphs.
Theorem 2.2. Perron-Frobenius theorem tells us that if our graph or subgraph is strongly
connected, then its Laplacian (which must be a non-negative irreducible matrix) will have the
form ωr where r is a real strictly positive eigenvalue, and ω ranges over the complex h-th roots
of unity for some positive integer h called the period of the matrix.
Theorem 2.3. Let G be a finite simple graph (without loops or multiple edges) and denote its
spectral radius rG. Then rG < 2 if and only if each connected component of G is one of Dynkin
diagrams An, Dn, E6, E7, E8. Moreover, rG = 2 if and only if each connected component of G
is one of the extended Dynkin diagram Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8

2.13 Gromov width and isoperimetric bounds

Pending summary of [Gro88] and [GL22].

3 Appendix B: Future Research

3.1 Sieves and the Riemann Hypotheses

The sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any
given limit and provides a useful blueprint for other ideas. It works by iteratively marking as
composite (i.e., not prime) the multiples of each prime, starting with the first prime number, 2.
Once all the multiples of each discovered prime have been marked as composites, the remaining
unmarked numbers are primes. The optimal implementation iterates up to the square of the
given limit, i.e. n

1
2 . It does so because a prime element in a composite number could not
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be larger than the square of the limit. This 1
2 is comparable to the square-root error term of

the prime number counting function which is equivalent to the 1
2 critical strip in the Riemann

Hypotheses.

The Hilbert–Pólya conjecture suggests that one way to derive the Riemann hypothesis would
be to find a self-adjoint operator, from the existence of which the statement on the real parts
of the zeros of ζ(s) would follow when one applies the criterion on real eigenvalues. Some
support for this idea comes from several analogues of the Riemann zeta functions whose zeros
correspond to eigenvalues of some operator: the zeros of a zeta function of a variety over a
finite field correspond to eigenvalues of a Frobenius element on an étale cohomology group, the
zeros of a Selberg zeta function are eigenvalues of a Laplacian operator of a Riemann surface,
and the zeros of a p-adic zeta function correspond to eigenvectors of a Galois action on ideal
class groups.

In algebraic geometry, the spectrum X of a commutative ring R is the space of prime ideals of
R with a natural topology (known as the Zariski topology). Grothendieck proposed augmenting
it with a sheaf of rings: to every open subset U he assigned a commutative ring OX(U). These
objects SpecR are the affine schemes; a general scheme is then obtained by ”gluing together”
affine schemes. In the classical case of sheaves on a topology, the gluing axiom required for
sheafification is phrased in terms of pointwise coverings. In the general case of categories,
Grothendieck topologies replace each open subset with an entire family of open subsets, known
as covering sieves. This allows binding common elements between stalks in order to develop a
topology to associate with a potentially discontinous category producing sites. Grothendieck
topologies were used to implement étale or Weil cohomologies which were used for proving parts
of the Weil conjectures. The Weil conjectures include an analog to Riemann Hypotheses but
are instead concerning varieties over a finite field.

In representation theory, a spectrum of a matrix is its eigenvalues. Spectral bounds can be
used to classify Dynkin graphs into their isomorphism classes (§2.12). Moreover, Dynkin graphs
encode the internal categorical structure and the interplay between groups of irreps generating
a simply connected Lie group. Perhaps the ADE gauge quiver to be used as a kernel can
be constructed through a sieve-like process that identifies irreps that bind and relate Dynkin
graphs together into a gauge quiver, much in the same way as sheafification of categories occurs
through sieve coverings and in topologies with the left adjoint. This gauge quiver may relate to
what Alain Connes describes as the “mysterious structure underlying the compactification of
SpecZ” in his essay on the Riemann Hypothesis in which he also preesents a solution strategy
involving the development of a suitable Weil cohomology. The category of motives is defined
to be a category such that every Weil cohomology (viewed as a functor) factors through it.
Motivic cohomology are iterated extensions between two motives. Could there be a motivic
cohomology (similar to an étale cohomology of a Grothendieck topology), that derives binding
irreps between Lie groups through iterated extensions of their motives?

As mentioned, the zeros of a Zeta function of a variety over a finite field correspond to eigenval-
ues of a Frobenius element on an étale cohomology group. Here, the Frobenius endomorphism
can be understood as an analog of the exponential, as it maps every element to its p-th power.
In Riemannian geometry, the exponential map is a map from a subset of a tangent space TpM
of a Riemannian manifold M to M itself. The “p-sweepout recipe” can be used for computing
curvature at point p by using its exponential map to produce geodesics in the range [0, 1] that
sweepout a tangent submanifold which can then have its Gaussian curvature computed using
the Theorema Egregium on symmetric properties of the Riemannian metric. 1

2 marks the re-
gion of flat Gaussian curvature and is the center of the exponential map between [0, 1]. In Lie
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theory, the exponential map is a map from the Lie algebra g of a Lie group G to the group,
which allows one to recapture the local group structure from the Lie algebra. The existence
of the exponential map is one of the primary reasons that Lie algebras are a useful tool for
studying Lie groups in representation theory. (When a Lie group is not simply connected,
representations of its Lie group and its Lie algebra are not in one-to-one correspondence, this
results in distinctions between integer spin and half-integer spin in quantum mechanics pro-
ducing fermions and bosons. For example, the rotation group SO(3) is not simply connected
There is one irreducible representation of the Lie algebra in each dimension, but only the odd-
dimensional representations of the Lie algebra come from representations of the group. There is
more that can be said regarding Yang-Mills gauge theory, Donaldson Theory, and flat instanton
connections and singularities.)

From this perspective, perhaps the critical strip of the RH has some correlation to an optimal
bound of an isoperimetric law. Moreover, perhaps it can be described by the ubiquitous Dynkin
Diagrams. One can imagine how the construction of Gromov p-widths, visualized as touching
k-spheres spanning a k+ 1 dimensional width to produce a volumetric bound, can be described
with Dynkin Diagrams. Much like how the blow up of an ADE or duVal singularity is described
as a union of Riemann spheres that touch each other to form the shape of the Dynkin diagram.
Then, perhaps the 1

2 of the exponential map relates to polar points of the sweepout of the
projective complex Riemann sphere.

3.2 Automorphisms of Dynkin Diagrams

Conjugation invariance (like the reflection periodicity) is also equivalent to commutation. The
normal subgroup, which is an equivalance class of the identity, is the center of an orbit and
can also be understood as a measure of commutativity. Inner automorphisms measure fail-
ure/divergence from commutativity, outer automorphisms measure the non-inner automor-
phisms and are isomorphic to automorphisms of Dynkin diagrams. As seen in Gabriel’s theorem,
any finite representation must have underlying ADE graphs. Automorphisms of ADE diagrams
are equivalent to the outer Automorphism group which composes with the inner automorphism
group that represents a measure of noncommutativity (non-abelian) of the group. Dynkin
quivers can’t have any indecomposable quiver representations nor have automorphisms other
than scalars, nor any self-extensions. Neural sheafs may be more akin to derived category of
coherent sheaves (on a smooth algebraic or projective variety and and on their noncommutative
counterparts). Recall, the cohomology group can be defined as a quotient of p-cocycles and
p-coboundaries, i.e. Hp = Zp/Bp. As seen in sheaf neural networks, this can be related to the
sheaf Laplacian constructed from coboundaries of cellular or simplicial complexes.

3.3 Extensions, Filtrations, and Cohomology

The category of quiver representations over a field is hereditary, with Ext2(M,N) = 0 for any
representations M,N . The extensions Ext are the derived homs, meaning they are homs not of
modules but of chain complexes, and are exact in that they preserve quasi-isomorphism.
Definition 3.1. Let H be a finite-dimensional algebra and S(1), . . . , S(N) be the simple mod-
ules of H corresponding to irreducible representations. Let Q be the Ext-quiver of H, i.e.
Q has as vertices the simple modules S(1), . . . , S(N) and an arrow S(i) → S(j) provided
Ext1H(S(i), S(j)) 6= 0.
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In finite global dimension there cannot be a loop in the Ext-quiver
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