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1 Introduction

1.1 A Brief History of Statistical Learning

1. At the beginning of the nineteenth century, Legendre and Gauss published papers on the
method of least squares, which implemented the earliest form of what is now known as
linear regression.

2. In 1936 Fisher proposed linear discriminant analysis.

3. In the 1940s, various authors put forth an alternative approach, logistic regression.

4. In the 1950’s, Frank Rosenblatt introduced the Perceptron and Neural Networks.

5. In the 1960’s, various authors introduced Nearest Neighbor and K-means clustering.

6. In the early 1970s, Nelder and Wedderburn coined the term generalized linear models
for an entire class of statistical learning methods that include both linear and logistic
regression as special cases.

7. By the end of the 1970s, many more techniques for learning from data were available but
all were almost all linear because of computational limitations.

8. By the 1980s, computing technology had finally improved sufficiently that non-linear
methods were no longer computationally prohibitive.

9. In the mid 1980s, Breiman, Friedman, Olshen and Stone introduced classification and
regression trees, including cross-validation for model selection.

10. In 1986, Hastie and Tibshirani introduced generalized additive models for a class of non-
linear extensions to generalized linear models.

11. In the 1990’s, Vapnik introduced Support Vector Machines.

12. In the 2000’s, Brieman introduced Random Forest

13. In the 2000’s, Hinton popularized Deep Learning and Artificial Neural Networks.
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1.2 Misc Concepts

1.2.1 Box-plots

One should also look at box-plots for each individual features. The box plot displays the
distribution of data based on the five number summary: minimum, first quartile, median, third
quartile, and maximum.

We can look for outliers beyond 3*IQR (Inter Quartile Range). Bootstrapping the data set also
provides some insight on outliers.
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2 Statistical Learning

2.1 What is Statistical Learning

n – number of observations or training data.

p – number of features or parameters.

xij – the value of the jth predictor, or input, for observation i

X = (x1, . . . , xp) – input vector a.k.a features, predictors, independent variables.

ε – error term, independent of X and has mean zero.

Y = f(X) + ε – a model a.k.a. output or dependent variable.

yi – the response variable for the ith observation

In essence, statistical learning refers to a set of approaches for estimating f .

2.1.1 Why Estimate f?

There are two main reasons for estimating f : prediction and inference.

Prediction

We can predict Y using Ŷ = f̂(X) where f̂ represents an estimate of f and Ŷ represents the
resulting prediction for Y . The accuracy of Ŷ as a prediction for Y depends on two quantities,
the reducible error and the irreducible error.

Reducible error is the result of an inaccurate statistical learning technique.

Irreducible error occurs because Y is a function of ε which has variability that is dependent of
X, so cannot be reduced via a statistical learning technique. Irreducible error may be larger
than zero because of unmeasured variables or unmeasurable variation. The irreducible error
will always provide an upper bound on the accuracy of our prediction for Y and is almost
always unknown in practice.

E[(Y − f̂(x))2|X = x] = [f(x)− f̂(x)]2︸ ︷︷ ︸
Reducible

+ V ar(ε)︸ ︷︷ ︸
Irreducible

(2.1)

Note, E(Y − Ŷ )2 = E[(Y − f̂(x))2|X = x] = E[f(X) + ε − f̂(X)]2 represents the average,
or expected value, of the squared difference between the predicted and actual value of Y and
V ar(ε) represents the variance associated with the error term ε. We square the values in order
to ignore the resulting sign when finding averages.
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Inference

Often, we are interested in understanding how Y changes as a function of X1, . . . , Xp. That is,

when we vary the value of a given feature, what should the result look like. Now f̂ cannot be
treated as a black box, because we need to know its exact form.

Common questions occurring in this setting include:

• Which predictors are associated with the response?

• What is the relationship between the response and each predictor?

• Can the relationship between Y and each predictor be adequately summarized using a
linear equation, or is the relationship more complicated?

Depending on whether our ultimate goal is prediction, inference, or a combination of the two,
different methods for estimating f may be appropriate. Linear models allow for relatively
simple and interpretable inference, but may not yield as accurate predictions as some other
approaches. In contrast, some highly non-linear approaches can potentially provide quite accu-
rate predictions for Y at the expense of a less interpretable model, which makes inference more
challenging.

2.1.2 How Do We Estimate f?

Our training data or observations can be represented as (x1, y1), (x2, y2), ..., (xn, yn) where
xi = (xi1 , xi2 , ..., xip)T are vectors and yi are typically scalars.

Then, we want to find a function f̂ such that Y ≈ f̂(X) for any observation (X,Y ). Broadly
speaking, most statistical learning methods for this task can be characterized as either para-
metric or non-parametric.

Parametric Methods

This approach reduces the problem of estimating f down to one of estimating a set of param-
eters.

1. First, we make an assumption about the functional form, or shape, of f .

2. After a model has been selected, we need a procedure that uses the training data to fit
or train the model.

For example, if we assume f is linear, then f(X) = β0 +β1X1 +β2X2 + ...+βpXp. To train the
linear model, we need to estimate the parameters β0, β1, ..., βp, which is commonly done using
(ordinary) least squares.

In general, fitting a more flexible model requires estimating a greater number of parameters.
These more complex models can lead to a phenomenon known as overfitting the data, which
essentially means they follow the errors, or noise, too closely.
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Non-parametric Methods

Non-parametric methods do not make explicit assumptions about the functional form of f and
instead seek an estimate of f that gets as close to the data points as possible while being
reasonably smooth.

A very large number of observations (far more than is typically needed for a parametric ap-
proach) is required in order to obtain an accurate estimate for f . In order to fit a thin-plate
spline, the data analyst must select a level of smoothness.

2.1.3 The Trade-Off Between Prediction Accuracy and Model Interpretability

If we are mainly interested in inference, then restrictive models are much more interpretable.
In contrast, very flexible approaches, such as the splines and the boosting methods can lead to
such complicated estimates of f that it is difficult to understand how any individual predictor is
associated with the response. Though there are clear advantages to using simple and relatively
inflexible statistical learning methods when inference is the goal, the converse is not typically
true. Instead we will often obtain more accurate predictions using a less flexible method. This
phenomenon has to do with the potential for overfitting in highly flexible methods.

2.1.4 Supervised Versus Unsupervised Learning

Most statistical learning problems fall into one of two categories: supervised or unsupervised.

In supervised learning, for each observation of the predictor measurement(s) xi, for i = 1, ..., n,
there is an associated response measurement yi. We wish to fit a model that relates the response
to the predictors, with the aim of accurately predicting the response for future observations
(prediction) or better understanding the relationship between the response and the predictors
(inference).

In contrast, unsupervised learning describes the situation in which for every observation i =
1, ..., n, we observe a vector of measurements xi but no associated response yi. It is not possible
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to fit a linear regression model, since there is no response variable to predict. One statistical
learning tool that we may use in this setting is cluster analysis which aims to ascertain, on the
basis of x1, ..., xn, whether the observations fall into relatively distinct groups.

In a semi-supervised learning problem, we wish to use a statistical learning method that can
incorporate the m observations for which response measurements are available as well as the
n−m observations for which they are not.

2.1.5 Regression Versus Classification Problems

Variables can be characterized as either quantitative (taking on numerical values) or quali-
tative/categorical. We tend to refer to problems with a quantitative response as regression
problems, while those involving a qualitative response are often referred to as classification
problems, but it’s not always clear-cut and many problems can use either responses. Whether
the predictors are qualitative or quantitative is generally considered less important provided
that any qualitative predictors are properly coded before the analysis is performed.

2.2 Assessing Model Accuracy

2.2.1 Measuring the Quality of Fit

In order to evaluate the performance of a statistical learning method on a given data set, we
need to quantify the extent to which the predicted response value for a given observation is
close to the true response value for that observation.

The most commonly-used measure is the mean squared error (MSE), given by

MSE =
1

n

n∑
i=1

(yi − f̂(xi))
2. (2.2)

The MSE computed using the training data that was used to fit the model can be referred to as
the training MSE. We want to choose the method that gives the lowest test MSE, i.e. we want
f̂(x0) to be approximately equal to y0, where (x0, y0) is a previously unseen test observation
not used to train the statistical learning method.

As model flexibility increases, training MSE will decrease, but the test MSE may not. When a
given method yields a small training MSE but a large test MSE, we are said to be overfitting
the data. This is a fundamental property of statistical learning that holds regardless of the
particular data set at hand and regardless of the statistical method being used. When we
overfit the training data, the test MSE will be very large because the supposed patterns that
the method found in the training data simply don’t exist in the test data. One important
method for estimating test MSE using the training data is cross-validation, examined later.

2.2.2 The Bias-Variance Trade-Off

The expected test MSE, for a given value x0, can always be decomposed into the sum of three
fundamental quantities: the variance of f̂(x0), the squared bias of f̂(x0) and the variance of
the error terms. That is,
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E
(
y0 − f̂(x0)

)2
= V ar(f̂(x0)) + [Bias(f̂(x0))]2 + V ar(ε). (2.3)

Here, E
(
y0− f̂(x0)

)2
defines the expected test MSE, computed by averaging the term over all

possible values of x0 in the test set. In order to minimize the expected test error, we need to
select a statistical learning method that simultaneously achieves low variance and low bias.

Variance refers to the amount by which f̂ would change if we estimated it using a different
training data set. In general, more flexible statistical methods have higher variance. This is
because changing any one of the data points may cause the estimate f̂ to change considerably.
A model with high variance does not generalize on the data which it hasn’t seen before and is
said to be overfitting.

Bias refers to the error that is introduced by approximating a real-life problem, which may be
extremely complicated, by a much simpler model. Generally, more flexible methods result in
less bias. A model with high bias will be making overly strong assumptions about the training
data and is said to be underfitting.

The relationship between bias, variance, and test set MSE is referred to as the bias-variance
trade-off.

As a general rule, as we use more flexible methods, the variance will increase and the bias
will decrease. The relative rate of change of these two quantities determines whether the test
MSE increases or decreases. As we increase the flexibility of a class of methods, the bias tends
to initially decrease faster than the variance increases. Consequently, the expected test MSE
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declines. However, at some point increasing flexibility has little impact on the bias but starts
to significantly increase the variance. When this happens the test MSE increases.

2.2.3 The Classification Setting

Many of the previous concepts, including the bias-variance trade-off, transfer over to the clas-
sification setting with only some modifications due to the fact that yi is no longer numerical.
Suppose that we seek to estimate f on the basis of training observations {(x1, y1), ..., (xn, yn)},
where now y1, ..., yn are qualitative.

The most common approach for quantifying the accuracy of our estimate f̂ is the training error
rate, the proportion of mistakes that are made if we apply our estimated f̂ to the training
observations:

1

n

n∑
i=1

I(yi 6= ŷi) (2.4)

Here ŷi is the predicted class label for the ith observation using f̂ , and I(yi 6= ŷi) is an indicator
variable that equals 1 if the ith observation was misclassified, i.e. yi 6= ŷi, and equals zero if it
was was classified correctly, i.e. yi = ŷi.

The test error rate associated with a set of test observations of the form (x0, y0) is given by,

Ave(I(y0 6= ŷ0)), (2.5)

where ŷ0 is the predicted class label. A good classifier minimizes the test error.

2.2.4 The Bayes Classifier

To minimize the test error rate, on average, we should simply assign a test observation with
predictor vector x0 to the class j for which the conditional probability

Pr(Y = j|X = x0) (2.6)

is largest. This very simple classifier is called the Bayes classifier. In a two-class problem the
classification will be class one if Pr(Y = 1|X = x0) > 0.5, and class two otherwise. The line
where the probability is exactly 0.5 is called the Bayes decision boundary.

The Bayes classifier produces the lowest possible test error rate, called the Bayes error rate,
given by,

1− E

(
max
j

Pr(Y = j|X)

)
, (2.7)

where the expectation averages the probability over all possible values of X. The Bayes error
rate is analogous to the irreducible error.

In theory we would always like to predict qualitative responses using the Bayes classifier. But
for real data, we do not know the conditional distribution of Y given X, and so computing
the Bayes classifier is impossible. Therefore, the Bayes classifier serves as an unattainable gold
standard against which to compare other methods.
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2.2.5 K-Nearest Neighbors

Given a positive integer K and a test observation x0, the K-nearest neighbors (KNN) classifier
first identifies the K points in the training data that are closest to x0, represented by N0. It
then estimates the conditional probability for class j as the fraction of points in N0 whose
response values equal j:

Pr(Y = j|X = x0) =
1

K

∑
i∈N0

I(yi = j). (2.8)

Finally, KNN applies Bayes rule and classifies the test observation x0 to the class with the
largest probability.

The choice of K has a drastic effect on the KNN classifier obtained. As K grows, the method
becomes less flexible and produces a decision boundary that is close to linear. This corresponds
to a low-variance but high-bias classifier. In general, as we use more flexible classification
methods, the training error rate will decline but the test error rate may not. In both the
regression and classification settings, choosing the correct level of flexibility is critical to the
success of any statistical learning method. The bias-variance tradeoff, and the resulting U-shape
in the test error, can make this a difficult task.

Nearest Neighbors can be good when the number of variables, p, is small, i.e. p ≤ 4 and for
a large number of sample points. It is one of many techniques called smoothers, like kernel
and spline smoothing. Unfortunately this method is very poor when p is large, since possible
nearby neighbors tend to be far away in high dimensions. This is known as the curse of
dimensionality. We need to get a reasonable fraction of the N values of yi to average in order
to bring the variance of our model down. However, as we increase the dimensions, the radius
we need to search increases and we lose the efficacy of estimating using local averages.
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3 Linear Regression

Linear regression is a very simple approach for supervised learning and is a useful tool for
predicting a quantitative response.

3.1 Simple Linear Regression

Simple linear regression is a very straightforward approach for predicting a quantitative response
Y on the basis of a single predictor variable X. It assumes that there is approximately a linear
relationship between X and Y . We will sometimes describe this by saying that we are regressing
Y on X.

Y ≈ β0 + β1X (3.1)

β0 and β1 are two unknown constants that represent the intercept and slope terms in the linear
model and are known as its coefficients or parameters. We may use our training data to produce
estimates β̂0 and β̂1 for prediction,

ŷ ≈ β̂0 + β̂1x, (3.2)

where ŷ indicates a prediction of Y on the basis of X = x.

3.1.1 Estimating the Coefficients

Let (x1, y1), (x2, y2), ..., (xn, yn) represent n observation pairs, each of which consists of a mea-

surement of X and a measurement of Y . We want to find an intercept β̂0 and a slope β̂1 such
that the resulting line is as close as possible to the n data points. The most common definition
of closeness involves minimizing the least squares criterion.

Let ŷi = β̂0 + β̂1xi be the prediction for Y based on the ith value of X. Then ei = yi −
ŷi represents the ith residual – this is the difference between ith observed response and its
prediction.

We define the residual sum of squares (RSS) as,

RSS = e21 + e22 + · · ·+ e2n

= (y1 − β̂0 − β̂1x1)2 + · · ·+ (yn − β̂0 − β̂1xn)2
(3.3)

The least squares approach chooses β̂0 and β̂1 to minimize the RSS.

Let ȳ ≡ 1
n

∑n
i=1 yi and x̄ ≡ 1

n

∑n
i=1 xi be the sample means. Then the the least squares

coefficient estimates are given by,

β̂0 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
,

β̂1 = ȳ − β̂1x̄.
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3.1.2 Assessing the Accuracy of the Coefficient Estimates

If f is to be approximated by a linear function, then we can write this relationship as a population
regression line,

Y = f(X) + ε

Y = β0 + β1X + ε

Where β0 is the intercept, i.e. the expected value of Y when X = 0, β1 is the slope, i.e. the
average increase in Y in a unit of increase of X, and ε is a catch-all error term.

The least squares line can always be computed using the coefficient estimates, however, the
population regression line is unobserved. Fundamentally, the concept of these two lines is a
natural extension of the standard statistical approach of using information from a sample to
estimate characteristics of an unmeasured large population.

The analogy between linear regression and estimation of the mean of a random variable is an
apt one based on the concept of bias. if we could average a huge number of estimates µ̂ of the
true population mean µ obtained from a huge number of sets of observations, then this average
would exactly equal µ. Thus it is an unbiased estimator, i.e. it does not systematically over-
or under-estimate the true parameter.

To determine the accuracy of a sample mean µ̂ as an estimate of µ, we can find the standard
error, which roughly tells us the average amount that this estimate differs from the actual value
of µ,

Var(µ̂) = SE(µ̂)2 =
σ2

n
, (3.4)

where σ is the standard deviation of each of the realizations yi of Y .

To compute the standard errors associated with β̂0 and β̂1,

SE(β̂0)2 = σ2

(
x̄2

(xi − x̄)2

)

SE(β̂1)2 =
σ2∑n

i=1(xi − x̄)2

where σ2 = Var(ε). In general, σ2 is not known, but can be estimated from the data. The
estimate of σ is known as the residual standard error, and is given by the formula,

RSE =
√
RSS/(n− 2) (3.5)

Standard errors can be used to compute confidence intervals. For example, a 95% confidence
interval is defined as a range of values such that with 95% probability, the range will contain
the true unknown value of the parameter.For linear regression the confidence interval of the
coefficients is given by,

β̂1 ± 2 · SE(β̂1)

β̂0 ± 2 · SE(β̂0).
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Standard errors can also be used to perform hypothesis tests on the coefficients. The null
hypotheses – H0 : There is no relationship between X and Y , i.e. β1 = 0. The alternative
hypothesis – Ha : There is some relationship between X and Y , i.e. β1 6= 0.

Notice that setting β1 = 0 removes the X term in Y = β0 + β1X + ε and X is not associated
with Y . So if β̂1 is sufficiently far from zero and SE(β̂1) is small, then our estimates of the

parameter our accurate and give strong evidence that the null hypotheses is true. if SE(β̂1) is

large, then SE(β̂1) must be large in absolute value in order for us to reject the null hypothesis.

In practice, we compute the t-statistic, given by,

t =
β̂1 − 0

SE(β̂1)
(3.6)

which measures the number of standard deviations that β̂1 is away from 0. If there is no
relationship between X and Y , the t-statistics will have a distribution with n − 2 degrees of
freedom.

The p-value corresponds to the probability of observing any number equal to |t| or larger in
absolute value, assuming β1 = 0. A small p-value indicates that it is unlikely to observe such
a substantial association between the predictor and the response due to chance, in the absence
of any real association, so we can infer that there is an association between the predictor and
the response. Then, we can reject the null hypothesis and may declare a relationship between
X and Y if the p-value is small enough.

Simply put, a p-value is the probability that random chance generated the data, or (plus) it
was the result of another event that is of equal or rarer probability. The traditional threshold
for determining significance of a p-value is < 0.05.

3.1.3 Assessing the Accuracy of the Model

Given the alternative hypothesis holds, we likely want to quantify the extent to which the
model fits the data. A linear regression fit is typically assessed using two related quantities:
the residual standard error (RSE) and the R2 statistic.

Residual Error

The RSE is an estimate of the standard deviation of the irreducible error term ε. Roughly
speaking, it is the average amount that the response will deviate from the true regression line
and is considered a measure of the lack of fit of the model to the data.

Recall, RSS is the residual sum of squares (3.3) and the RSE was previously used to estimate
σ (3.5). Then, the RSE can be written as,

RSE =

√
1

(n− 2)
RSS =

√√√√ 1

(n− 2)

n∑
i=1

(yi − ŷi)2. (3.7)
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R2 Statistic

The R2 statistic provides an alternative measure of fit in terms of the proportion of explained
variance, i.e. not residual, and so it always takes on a value between 0 and 1. Moreover, it
is independent of the scale of Y , unlike the RSE. The R2 statistic is a measure of the linear
relationship between X and Y .

Let TSS = (yi − ŷ)2 be the total sum of squares and RSS be the residual sum of squares (3.3).
Then R2 is given by,

R2 =
TSS− RSS

TSS
= 1− RSS

TSS
(3.8)

TSS can be thought of as the amount of variability inherent in the response before the regres-
sion is performed while RSS measures the amount of variability that is left unexplained after
performing the regression. TSS - RSS measures the amount of variability in the response that
is explained (or removed) by performing the regression, and R2 measures the proportion of
variability in Y that can be explained using X.

An R2 statistic that is close to 1 indicates that a large proportion of the variability in the
response has been explained by the regression, while the converse holds for a value close to 0.
The R2 statistic is similar to correlation, but holds for a between a larger number of variables.

3.2 Multiple Linear Regression

We can handle multiple predictors by giving each predictor a separate slope coefficient in a
single model. In general, suppose that we have p distinct predictors. Then the multiple linear
regression model takes the form,

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε, (3.9)

where Xj represents the jth predictor and βj quantifies the association between that variable
and the response, namely the average effect on Y of a one unit increase in Xj while holding all
other predictors fixed.

3.2.1 Estimating the Regression Coefficients

Given estimates β̂0, β̂1, ..., β̂p, we can make predictions using the formula,

ŷ = β̂0, β̂1x1, ..., β̂pxp. (3.10)

Again, we choose β0, β1, ..., βp to minimize the residual sum of squared,

RSS =

n∑
i=1

(yi − ŷi)2

=

n∑
i=1

(yi − β̂0 − β̂1x1, ..., β̂pxp)2

=

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2
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The values β̂0, β̂1x1, ..., β̂pxp that minimize the above equation are the multiple least squares
regression coefficient estimates. These values are most easily represented using matrix algebra
and will be revisited later.

3.2.2 Some Important Questions

1. Is at least one of the predictors X1, X2, ..., Xp useful in predicting the response?

2. Do all the predictors help to explain Y , or is only a subset of the predictors useful?

3. How well does the model fit the data?

4. Given a set of predictor values, what response value should we predict, and how accurate
is our prediction?

Is There a Relationship Between the Response and Predictors?

In the multiple regression setting with p predictors, we need to ask whether all of the regression
coefficients are zero. The null hypothesis becomes,

H0 : β1 = β2 = · · · = βp = 0. (3.11)

This hypothesis test is performed by computing the F-statistic.

F =
(TSS− RSS)/p

RSS/(n− p− 1)
(3.12)

When there is no relationship between the response and predictors, one would expect the F-
statistic to take on a value close to 1. On the other hand, if Ha is true (i.e. at least one βj is
non-zero.), then E(TSS− RSS)/p > σ2, so we expect F to be greater than 1.

The approach of using an F-statistic to test for any association between the predictors and
the response works when p is relatively small, and certainly small compared to n. However,
sometimes we have a very large number of variables. If p > n then there are more coefficients
βj to estimate than observations from which to estimate them. In this case we cannot even
fit the multiple linear regression model using least squares, so the F-statistic cannot be used.
Approaches like forward selection can be used instead.

3.2.3 Deciding on Important Variables

The first step in a multiple regression analysis is to compute the F-statistic and to examine the
associated p-value. If we conclude on the basis of the p-value that at least one of the predictors
is related to the response, then it is natural to wonder which are the relevant ones. The task
of determining which predictors are associated with the response, in order to fit a single model
involving only those predictors, is referred to as variable selection, discussed more in detail in
chapter 6.

There are a total of 2p models that contain subsets of p variables. In general, we cannot consider
all 2p models, and instead we need an automated and efficient approach to choose a smaller set
of models to consider. There are three classical approaches for this task:
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1. Forward selection – We begin with the null model, i.e. a model that contains an intercept
(i.e β0) but no predictors. We then fit p simple linear regressions and add to the null
model the variable that results in the lowest RSS. We then add to that model the variable
that results in the lowest RSS for the new two-variable model. This approach is continued
until some stopping rule is satisfied.

2. Backward selection – We start with all variables in the model, and remove the variable
with the largest p-value—that is, the variable that is the least statistically significant. The
new (p − 1)-variable model is fit, and the variable with the largest p-value is removed.
This procedure continues until a stopping rule is reached, i.e. when all remaining variables
have a p-value below some threshold.

3. Mixed selection – This is a combination of forward and backward selection. We start with
no variables in the model, and as with forward selection, we add the variable that provides
the best fit. Since the p-values for variables can become larger as new predictors are added
to the model, if at any point the p-value for one of the variables in the model rises above a
certain threshold, then we remove that variable from the model. We continue to perform
these forward and backward steps until all variables in the model have a sufficiently low
p-value.

Backward selection cannot be used if p > n, while forward selection can always be used. Forward
selection is a greedy approach, and might include variables early that later become redundant.
Mixed selection can remedy this.

Model Fit

In multiple linear regression, R2 = Cor(Y, Ŷ )2, the square of the correlation between the
response and the fitted linear model. R2 will always increase when more variables are added to
the model, even if they are only weakly associated with the response. This is due to the fact
that adding another variable to the least squares equations must allow us to fit the training
data more accurately, so the R2 statistic, which is also computed on the training data, must
increase.

Predictions

After fitting a regression model, there are three sorts of uncertainty associated with a prediction.

1. There will be some inaccuracy in the coefficient estimates related to the reducible error of
using the least squares plane. We can compute a confidence interval in order to determine
how close Ŷ will be to f(X).

2. There is potentially an additional source of reducible error, called model bias, from using
a linear model to represent complex non-linear data.

3. There will be some amount of irreducible or random error in the model. Prediction
intervals are used to incorporate both the error in the estimate for f(X) (the reducible
error) as is done in a confidence interval, as well as the uncertainty as to how much an
individual point will differ from the population regression plane (the irreducible error).
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3.3 Other Considerations in the Regression Model

3.3.1 Qualitative Predictors

Predictors with Only Two Levels

If a qualitative predictor (also known as a factor) only has two levels, or possible values, then
incorporating it into a regression model is very simple. We simply create an indicator or dummy
variable that takes on two possible numerical values, i.e. (0 or 1) and use this variable as a
predictor in the regression equation.

Qualitative Predictors with More than Two Levels

In this situation, we can create additional dummy variables. There will always be one fewer
dummy variable than the number of levels. The level with no dummy variable is known as the
baseline.

3.3.2 Extensions of the Linear Model

Two of the most impactful assumptions in the standard linear regression model state that
the relationship between the predictors and response are additive and linear. The additive
assumption means that the effect of changes in a predictor Xj on the response Y is independent
of the values of the other predictors. The linear assumption states that the change in the
response Y due to a one-unit change in Xj is constant, regardless of the value of Xj .

Removing the Additive Assumption

One way of extending this model to allow for interaction effects is to include a third predictor,
called an interaction term β̃1, which is constructed by computing the product of X1 and X2.

Y = β0 + β1X1 + β2X2 + β3X1X2 + ε

= β0 + (β1 + β3X2)X1 + β2X2 + ε

= β0 + β̃1X1 + β2X2 + ε

Then, adjusting X2 will change the impact of X1 on Y .

The hierarchical principle states that if we include an interaction in a model, we should also
include the main effects, even if the p-values associated with their coefficients are not significant.

Non-linear Relationships

In some cases, the true relationship between the response and the predictors may be nonlinear.
A simple way to directly extend the linear model to accommodate non-linear relationships is
to use polynomial regression, in which we include polynomial functions of the predictors in the
regression model.
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3.3.3 Potential Problems and Troubleshooting

1. Non-linearity of the response-predictor relationships.

Residual plots are useful graphical tool for identifying non-linearity. If there is a strong
pattern in the plot of the residuals, ei = yi − ŷi, versus the predictor xi, there may be a
problem with some aspect of the linear model.

2. Correlation of error terms.

In general, the assumption of uncorrelated errors is extremely important for linear regres-
sion as well as for other statistical methods.

If there is correlation among the error terms, then the estimated standard errors will
tend to underestimate the true standard errors, confidence and prediction intervals will
be narrower than they should be, and p-values associated with the model will be lower
than they should be. Such correlations frequently occur in the context of time series data.

We can plot the residuals from our model as a function of time and if the errors are
uncorrelated, then there should be no discernible pattern. Otherwise we may find that
tracking exists, i.e. adjacent residuals often have similar values.

3. Non-constant variance of error terms.

An important assumption is that error terms have constant variance, i.e. Var(εi) = σ2.
One can identify non-constant variance, a.k.a. heteroscedasticity, from the presence of a
funnel shape in the residual plot.

A simple remedy may be to fit our model by weighted least squares, with weights propor-
tional to the inverse weighted variances.

4. Outliers.

A point for which yi is far from the value predicted by the model can occur for many
reasons, possibly as a result of incorrect recording of an observation. It is typical for an
outlier that does not have an unusual predictor value to have little effect on the least
squares fit, but may have an effect on the RSE, used to compute all confidence intervals
or p-values, as well as R2.

Residual plots can be used to identify outliers, but in practice, it can be difficult to decide
how large a residual needs to be before we consider the point to be an outlier. Instead, we
can plot the studentized residuals, computed by dividing each residual ei by its estimated
standard error. Observations whose studentized residuals are greater than 3 in absolute
value are possible outliers and can be removed or examined to determine a deficiency with
the model, such as a missing predictor.

5. High-leverage points.

In contrast to outliers, observations with high leverage have an unusual value for xi.
Removing a high leverage observation has a much more substantial impact on the least
squares line than removing the outlier.

To quantify an observation’s leverage, we compute the leverage statistic. The leverage
statistic hi is always between 1/n and 1, and the average leverage for all the observations
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is always equal to (p+ 1)/n. For a simple linear regression,

hi =
1

n

(xi − x̄)2∑n
i′=1(xi − x̄)2

(3.13)

6. Collinearity.

Collinearity refers to the situation in which two or more predictor variables are closely
related to one another. In the regression context, it can be difficult to separate out the
individual effects of collinear variables on the response and reduces the accuracy of the
estimates of the regression coefficients. This causes the standard error for β̂j to grow
and the t-statistic to decline which in turn means the power of the hypothesis test - the
probability of correctly detecting a non-zero coefficient - is reduced by collinearity.

A simple way to detect collinearity is to look at the correlation matrix of the predictors,
though this may not always work. In particular, it is possible for collinearity to exist
between three or more variables in what’s called multicollinearity. In this situation it’s
better to compute the variance inflation factor (VIF), the ratio of the variance of β̂j when

fitting the full model divided by the variance of β̂j if fit on its own. A VIF value of 1
indicates the complete absence of collinearity, a VIF value that exceeds 5 or 10 indicates
a problematic amount of collinearity.

V IF (β̂j) =
1

1−R2
Xj |X−j

(3.14)

where R2
Xj |X−j is the R2 from a regression of Xj onto all of the other predictors.

To mitigate collinerarity, we may drop one of the problematic variables from the regres-
sion, which will also reduce redundancy. Alternatively, we may combine the collinear
variables together into a single predictor.

3.4 Comparison of Linear Regression with K-Nearest Neighbors

Linear regression is an example of a parametric approach and has many advantages: they
are often easy to fit, the coefficients have simple interpretations, and tests of statistical
significance can be easily performed. But parametric methods do have a disadvantage:
by construction, they make strong assumptions about the form of f(X).

In contrast, non-parametric methods do not explicitly assume a parametric form for f(X),
and thereby provide an alternative and more flexible approach for performing regression.

One of the simplest and best-known non-parametric methods is K-nearest neighbors re-
gression (KNN regression), which is closely related to the KNN classifier.

Given a value for K and a prediction point x0, KNN regression first identifies the K
training observations that are closest to x0, represented by N0. It then estimates f(x0)
using the average of all the training responses in N0. In general, the optimal value for K
will depend on the bias-variance tradeoff.

f̂(x0) =
1

K

∑
xi∈N0

yi. (3.15)
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The parametric approach will outperform the nonparametric approach if the parametric
form that has been selected is close to the true form of f . Even when the true relationship
is highly non-linear, KNN may still provide inferior results to linear regression. A decrease
in performance as the dimension increases is a common problem for KNN, and results
from the fact that in higher dimensions there is effectively a reduction in sample size. As
a general rule, parametric methods will tend to outperform non-parametric approaches
when there is a small number of observations per predictor.
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4 Classification

4.1 An Overview of Classification

The linear regression model assumes that the response variable Y is quantitative. But
in many situations, the response variable is instead qualitative. Though just as in the
regression setting, in the classification setting we have a set of training observations
(x1, y1), . . . , (xn, yn).

4.2 Why Not Linear Regression

Linear regression is not appropriate in the case of a qualitative response since codings
of qualtative states into numeric values may produce unwarranted implicit relations with
each of the codings depending on their orderings. This can produce fundamentally dif-
ferent linear models that would ultimately lead to different sets of predictions on test
observations.

For a binary (two level) qualitative response we could potentially use the dummy variable
approach to code the response and could then fit a linear regression to it. However, if we
use linear regression, some of our estimates might beoutside the [0, 1] interval, making
them hard to interpret as probabilities. Nevertheless, the predictions provide an ordering
and can be interpreted as crude probability estimates. It turns out that the classifications
that we get if we use linear regression to predict a binary response will be the same as
for the linear discriminant analysis (LDA) procedure discussed later.

4.3 Logistic Regression

4.3.1 The Logistic Model

Any time a straight line is fit to a binary response that is coded as 0 or 1, in principle we
can always predict p(X) < 0 for some values of X and p(X) > 1 for others (unless the
range of X is limited). Instead, we must model p(X) using a function that gives outputs
between 0 and 1 for all values of X. Many functions meet this description. In logistic
regression, we use the logistic function,

p(X) =
eβ0+β1X

1 + eβ0+β1X
(4.1)

To fit the model, we use a method called maximum likelihood, discussed in the next
section. The logistic function will always produce an S-shaped curve, and so regardless
of the value of X, we will obtain a sensible prediction. After a bit of manipulation, we
find that,

p(X)

1− p(X)
= eβ0+β1X (4.2)

The quantity on the left-hand side is called the odds and can take on any value between
0 and ∞, indicating very low and high probabilities. Odds are traditionally used instead
of probabilities in horse-racing, since they relate more naturally to the correct betting
strategy.
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By taking the logarithm of both sides,

log

(
p(X)

1− p(X)

)
= β0 + β1X (4.3)

The left-hand side is called the log-odds or logit. We see that the logistic regression model
has a logit that is linear in X.

Recall that in a linear regression model, β1 gives the average change in Y associated with
a one-unit increase in X. In contrast, in a logistic regression model, increasing X by one
unit changes the log odds by β1, or equivalently it multiplies the odds by eβ1 . The amount
that p(X) changes due to a one-unit change in X will depend on the current value of X,
though if β1 is positive then increasing X will be associated with increasing p(X), and if
β1 is negative then increasing X will be associated with decreasing p(X).

4.3.2 Estimating the Regression Coefficients

The coefficients β0 and β1 are unknown, and must be estimated based on the available
training data. Maximum likelihood is used to fit a logistic regression model instead of
least squares. The estimates β̂0 and β̂1 are chosen to maximize what’s called the likelihood
function:

l(β0, β1) =
∏
i:yi=1

p(xi)
∏

i′:yi′=1

(1− p(xi′)) (4.4)

Maximum likelihood is a very general approach that is used to fit many non-linear models.
In the linear regression setting, the least squares approach is in fact a special case of
maximum likelihood.

Many aspects of the logistic regression are similar to the linear regression output. For
example, we can measure the accuracy of the coefficient estimates by computing their stan-
dard errors. The z-statistic plays the same role as the t-statistic in the linear regression
output. the z-statistic associated with β1 is equal to β̂1/SE(β̂1), and so a large (absolute)
value of the z-statistic indicates evidence against the null hypothesis H0 : β1 = 0. This

null hypothesis implies that p(X) = eβ0

1+eβ0
.

4.3.3 Making Predictions

Once the coefficients have been estimated, it is a simple matter to compute the probability.
We can then use qualitative predictors with the logistic regression model to fit the model
by using the dummy variable approach mentioned previously, i.e. the variable takes on
a value of 1 or 0. If the coefficient associated with the dummy variable is positive and
the associated p-value is statistically significant, this will validate that there is a higher
probability associated with the encoded qualitative state.

24



4.3.4 Multiple Logistic Regression

By analogy with the extension from simple to multiple linear regression, we can generalize
the logistic model as follows,

log

(
p(X)

1− p(X)

)
= β0 + β1X1 + · · ·+ βpXp, (4.5)

where X = (X1, ..., Xp) are p predictors. This can be rewritten as,

p(X) =
eβ0+β1X1+···+βpXp

1 + eβ0+β1X1+···+βpXp
(4.6)

Just as before, we use the maximum likelihood method to estimate β0, β1, . . . , βp.

4.3.5 Logistic Regression for > 2 Response Classes

Suppose we want to classify a response variable that has more than two classes. The
two-class logistic regression models discussed in the previous sections have multiple-class
extensions, but in practice they tend not to be used all that often. Instead, a more popular
multiple-class classification method known as, discriminant analysis, is used.

4.4 Linear Discriminant Analysis

Logistic regression involves directly modeling Pr(Y = k|X = x) using the logistic function
to model the conditional distribution of the response Y , given the predictor(s) X. In
an alternative and less direct approach to estimating these probabilities, we model the
distribution of the predictors X separately in each of the response classes (i.e. given Y ),
and then use Bayes’ theorem (4.7) to flip these around into estimates for Pr(Y = k|X =
x). When these distributions are assumed to be normal the model is very similar in form
to logistic regression.

Linear discriminant analysis is a useful alternative to logistic regression because:

• When the classes are well-separated, the parameter estimates for the logistic regres-
sion model are surprisingly unstable. Linear discriminant analysis does not suffer
from this problem.

• If n is small and the distribution of the predictors X is approximately normal in each
of the classes, the linear discriminant model is again more stable than the logistic
regression model.

• As mentioned, linear discriminant analysis is popular when we have more than two
response classes.

4.4.1 Using Bayes’ Theorem for Classification

Suppose the qualitative response variable Y can take on K > 2 possible distinct and
unordered values. Let πk represent the overall or prior probability that a randomly
chosen observation comes from the kth class or category of the response variable Y .
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If X is a discrete random variable, Let fk(X) = Pr(X = x|Y = k) denote the density
function of X for an observation that comes from the kth class. The densiity function
is relatively large if there is a high probability that an observation in the kth class has
X ≈ x and small otherwise. Then Bayes’ theorem states that,

Pr(Y = k|X = x) =
πkfk(x)∑K
l=1 πlfl(x)

. (4.7)

Recall, pk(X) = Pr(Y = k|X). We refer to pk(x) as the posterior probability that an
observation belongs to the kth class, given the predictor value for that observation, i.e.
X = x. This suggests that instead of directly computing pk(X) as was done in previous
methods, we can plug in estimates of πk and fk(X) into the above formula. Estimating
the pripor probabilities πk is easy if we have a random sample of Y s from the population:
we simply compute the fraction of the training observations that belong to the kth class.
However, estimating fk(X) tends to be more challenging, unless we assume some simple
forms for these densities.

Recall the Bayes classifier, which classifies an observation to the class for which pk(X) is
largest, has the lowest possible error rate out of all classifiers. Therefore, if we can find
a way to estimate fk(X), then we can develop a classifier that approximates the Bayes
classifier.

4.4.2 Linear Discriminant Analysis for p = 1

Assume that we only have one predictor, i.e. p = 1. To obtain an estimate for fk(x) to
plug into the Linear Discriminant Analysis formula we will first make some assumptions
about its form.

Suppose we assume that fk(x) is normal or Gaussian. In the one-dimensional setting,
the normal density takes the form,

fk(x) =
1√

2πσk
exp

(
− 1

2σ2
k

(x− µk)2

)
(4.8)

where µk and σ2
k are the mean and variance parameters for the kth class. We may

assume there is a shared variance term across all K classes, i.e. σ2
1 = · · · = σ2

K , which for
simplicity we can denote by σ2.

We can then plug this into Bayes’ theorem (4.7),

pk(x) =
πk

1√
(2π)σk

exp
(
− 1

2σ2
k

(x− µk)2
)

∑K
l=1 πl

1√
(2π)σk

exp
(
− 1

2σ2
k

(x− µk)2
) . (4.9)

Taking the log and rearranging the terms shows us that assigning an observation in
a Bayes’ classifier is equivalent to assigning the observation to the class for which the
following equation is the largest:
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δk(x) = x · µk
σ2
− µ2

k

2σ2
+ log(πk) (4.10)

In practice, even if we are quite certain of our assumption that X is drawn from a Gaus-
sian distribution within each class, we still have to estimate the parameters µ1, ..., µK ,
π1, ..., πK , and σ2. The linear discriminant analysis (LDA) method approximates the
Bayes classifier by plugging estimates for πk, µk, and σ2 into the above (4.10). In partic-
ular, the following estimates are used:

µ̂ =
1

nk

∑
i:yi=k

xi

σ̂2 =
1

n−K

K∑
k=1

∑
i:yi=k

(xi − µ̂k)2
(4.11)

where n is the total number of training observations and nk is the number of training
observations in the kth class. The estimate for µk is simply the average of all the training
observations from the kth class, while σ̂2 can be seen as a weighted average of the sample
variances for each of the K classes.

Sometimes we have knowledge of the class membership probabilities π1, ..., πK , otherwise
LDA estimates πk using the proportion of the training observations that belong to the
kth class, i.e,

π̂k =
nk
n
. (4.12)

When plugging the above estimates into δk (4.10), they become the discriminant func-

tions, δ̂k(x). The word linear in the classifier’s name stems from the fact that the dis-

criminant functions δ̂k are linear functions of x. Again, we assign an observation X = x
to the class for which δ̂k is largest:

δ̂k(x) = x · µ̂k
σ̂2
− µ̂2

k

2σ̂2
+ log(π̂k). (4.13)

To reiterate, the LDA classifier results from assuming that the observations within each
class come from a normal distribution with a class-specific mean vector and a common
variance σ2, then plugging estimates for these parameters into the Bayes classifier.

4.4.3 Linear Discriminant Analysis for p > 1

To extend the LDA classifier to the case of multiple predictors we will assume that
X = (X1, X2, ..., Xp) is drawn from a multivariate Gaussian (or multivariate normal)
distribution, with a class-specific mean vector and a common covariance matrix.

The multivariate Gaussian distribution assumes that each individual predictor follows a
one-dimensional normal distribution with some correlation between each pair of predic-
tors. To indicate that a p-dimensional random variable X has a multivariate Gaussian
distribution, we write X ∼ N(µ,Σ). Here E(X) = µ is the mean of X (a vector with p
components), and Cov(X) = Σ is the p× p covariance matrix of X.
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The Gaussian density is defined as,

f(x) =
1

(2π)p/2|Σ|1/2
exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
(4.14)

Then, in the case of p > 1 predictors, the LDA classifier assumes observations in the
kth class are drawn from a multivariate Gaussian distribution N(µk,Σ), where µk is a
class-specific mean vector, and Σ is a covariance matrix that is common to all K classes.

Using this density function we see the Bayes classifier now assigns an observation X = x
to the class for which δk(x) is the largest. This is essentially the vector/matrix version of
the discriminant functions,

δk(x) = xTΣ−1µk −
1

2
µTk Σ−1µk + log πk. (4.15)

The formulas for estimating the unknown parameters µ1, . . . , µK , π1, ..., πK , and Σ are
similar to those used in the one-dimensional case. To assign a new observation X = x,
LDA plugs these estimates into the multi-dimensional discriminant functions and classifies
to the class for which δ̂k(x) is largest. Note, the LDA decision rule still only depends on
x only through a linear combination of its elements.

Class-specific performance is also important in medicine and biology, where the terms
sensitivity, corresponding to true positive classifications, and specificity, corresponding to
true negative classifications, characterize the performance of a model or screening test.

The Bayes classifier works by assigning an observation to the class for which the posterior
probability pk(X) is greatest. Thus, the Bayes classifier, and by extension LDA, uses a
threshold of 50% for the posterior probability in order to assign an observation to a class.
However, if we are more concerned about incorrectly predicting the class status, then we
can consider lowering this threshold. This may increase the overall error but may make
for more accurate identification of a certain class.

Using a threshold of 0.5 minimizes the overall error rate, shown as a black solid line.
This is to be expected, since the Bayes classifier uses a threshold of 0.5 and is known
to have the lowest overall error rate. As the threshold is reduced, the error rate among
a specific classification decreases steadily (orange dotted line), but the error rate among
the observations who do not belong to the class increases (blue dotted line).
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Varying the classifier threshold changes its true positive and false positive rate. These
are also called the sensitivity and one minus the specificity of our classifier. Below are
tables of classifier names and measures.

The denominators for the false positive and true positive rates are the actual population
counts in each class. In contrast, the denominators for the positive predictive value and
the negative predictive value are the total predicted counts for each class.

The ROC curve (receiver operating characteristics) above is a popular graphic for si-
multaneously displaying the two types of errors for all possible thresholds. The overall
performance of a classifier, summarized over all possible thresholds, is given by the area
under the curve (AUC). An ideal ROC curve will hug the top left corner, so the larger
the AUC the better the classifier.

29



A confusion matrix is a way of visualizing predictions made by a classifier and is just a
table showing the distribution of predictions for a specific class. The x-axis indicates the
true class of each observation while the y-axis corresponds to the class predicted by the
model.

4.4.4 Quadratic Discriminant Analysis

Similarly to LDA, the quadratic discriminant analysis (QDA) classifier results from as-
suming that the observations from each class are drawn from a Gaussian distribution,
and from plugging estimates for the parameters into Bayes’ theorem in order to perform
prediction. However, unlike LDA, QDA assumes that each class has its own covariance
matrix, i.e. X ∼ N(µk,Σk) where Σk is a covariance matrix for the kth class.

Now, the Bayes classifier assigns an observation X = x to the class for which δk is largest.

δk = −1

2
(x− µk)TΣ−1k (x− µk)− 1

2
log |Σk|+ log πk

= −1

2
xTΣ−1k x+ xTΣ−1k µk −

1

2
µTk Σ−1k µk −

1

2
log |Σk|+ log πk

(4.16)

The QDA classifier involves plugging estimates for Σk, µk, and πk into the above equation
and then assigning an observation X = x to the class for which this quantity is largest.
Though unlike in the LDA, the quantity x appears as a quadratic function.

The reason for using QDA over LDA involves the bias-variance tradeoff. When there
are p predictors, QDA must estimate K covariance matrices which requires estimating

K p(p+1)
2 quadratic parameters. Alternatively, LDA only estimates Kp linear parameters.

This means that LDA is a much less flexible classifier than QDA, and so has substantially
lower variance, i.e. it’s less prone to overfitting. This can potentially lead to improved
prediction performance, but there is a trade-off: if LDA’s assumption that the K classes
share a common covariance matrix is badly off, then LDA can suffer from high bias.
Roughly speaking, LDA tends to be a better bet than QDA if there are relatively few
training observations and so reducing variance is crucial. In contrast, QDA is recom-
mended if the training set is very large, so that the variance of the classifier is not a
major concern, or if the assumption of a common covariance matrix for the K classes is
clearly untenable.
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4.5 A Comparison of Classification Methods

So far we have covered 4 classification methods: K-nearest neighbors (KNN) logistic
regression, linear discriminant analysis (LDA), and quadratic discriminant analysis QDA.
To describe a simple playbook: when the true decision boundaries are linear, then the LDA
and logistic regression approaches will tend to perform well. When the boundaries are
moderately non-linear, QDA may give better results. Finally, for much more complicated
decision boundaries, a non-parametric approach such as KNN can be superior. But the
level of smoothness for a non-parametric approach must be chosen carefully.

The logistic regression and LDA methods are closely connected in their linearity but
differ in fitting procedures and their assumptions about the distributions in the data. To
understand how, consider the two-class setting with p = 1 predictor, and let p1(x) and
p2(x) = 1− p1(x) be the probabilities that the observation X = x belongs to class 1 and
class 2 respectively. In the LDA framework, the log odds is given by,

log

(
p1(x)

1− p1(x)

)
= log

(
p1(x)

p2(x)

)
= c0 + c1x, (4.17)

where c0 and c1 are functions of µ1, µ2, and σ2. In logistic regression we have,

log

(
p1(x)

1− p1(x)

)
= β0 + β1x. (4.18)

Both of these equations are linear functions of x so both logistic regression and LDA
produce linear decision boundaries. The only difference is the fact that β0 and β1 are
estimated using maximum likelihood, whereas c0 and c1 are computed using the esti-
mated mean and variance from a normal distribution. This connection also holds for
multidimensional data with p > 1.

Though logistic regression and LDA differ only in their fitting procedures, one may out-
perform the other depending on whether the LDA distribution assumptions are met, i.e.
that observations are drawn from a Gaussian distribution with a common covariance
matrix.

Recall that KNN is non-parametric approach: no assumptions are made about the shape
of the decision boundary. Therefore, we can expect this approach to dominate LDA and
logistic regression when the decision boundary is highly non-linear. On the other hand,
KNN does not tell us which predictors are important; we don’t get a table of coefficients.

Finally, QDA serves as a compromise between the non-parametric KNN method and the
linear LDA and logistic regression approaches. QDA can accurately model a wider range
of problems than the linear methods, and though it’s not as flexible as KNN, it can
perform better in the presence of a limited number of training observations because it
does make some assumptions about the form of the decision boundary.
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5 Resampling Methods

Resampling methods involve repeatedly drawing samples from a training set and refitting
a model of interest on each sample in order to obtain additional information about the
fitted model. Resampling approaches can be computationally expensive, because they
involve fitting the same statistical method multiple times using different subsets of the
training data. However, due to recent advances in computing power, the computational
requirements of resampling methods generally are not prohibitive. Two of the most
commonly used resampling methods are cross-validation and the bootstrap.

Cross-validation can be used to estimate the test error associated with a given statistical
learning method, or to select the appropriate level of flexibility. The process of evaluating
a model’s performance is known as model assessment, whereas the process of selecting
the proper level of flexibility for a model is known as model selection. The bootstrap is
most commonly used to provide a measure of accuracy of a parameter estimate or of a
given statistical learning method.

5.1 Cross-Validation

In the absence of a very large designated test set that can be used to directly estimate the
test error rate some methods make a mathematical adjustment to the training error rate
in order to estimate the test error rate, examined later. Alternatively, we now consider a
class of methods that estimate the test error rate by holding out a subset of the training
observations from the fitting process, and then applying the statistical learning method
to those held out observations.

5.1.1 The Validation Set Approach

The validation set approach is a very simple strategy that involves randomly dividing the
available set of observations into two parts, a training set and a validation set or hold-out
set. The model is fit on the training set, and the fitted model is used to predict the
responses for the observations in the validation set which provides an estimate of the test
error rate.

The validation set approach has two potential drawbacks which will be addressed in
cross-validation:

(a) The validation estimate of the test error rate can be highly variable, depending on
precisely which observations are included in the training set and which observations
are included in the validation set.

(b) In the validation approach, only a subset of the observations that are included in
the training set are used to fit the model. This suggests that the validation set error
rate may tend to overestimate the test error rate.

5.1.2 Leave-One-Out Cross-Validation

Leave-one-out cross-validation (LOOCV) also involves splitting the set of observations
into two parts but instead of creating two subsets of comparable size, a single observation
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(x1, y1) is used for the validation set, and the remaining observations {(x2, y2), ..., (xn, yn)}
make up the training set.

Although MSE1 = (y1 − ŷ1)2 provides an approximately unbiased estimate for the test
error, it is a poor estimate because it is highly variable since it is based upon a single
observation. We can repeat the procedure by selecting (x2, y2) for the validation data,
training the statistical learning procedure on the other n− 1 observations, repeating this
approach n times. The LOOCV estimate for the test MSE is the average of these n test
error estimates:

CV(n) =
1

n

n∑
i=1

MSEi. (5.1)

Using all but one of the observations for training results in less bias and tends not to
overestimate the test error rate as much as the validation set approach does. in contrast
to the validation approach, performing LOOCV multiple times will always yield the same
results: there is no randomness in the training/validation set splits.

LOOCV can be expensive and time consuming if n is large or the model is slow to fit
since the model has to be fit n times. With least squares linear or polynomial regression,
an amazing shortcut makes the cost of LOOCV the same as that of a single model fit.

CV(n) =
1

n

n∑
i=1

(
yi − ŷi
1− hi

)2

. (5.2)

where ŷi is the ith fitted value from the original least squares fit, and hi is the leverage
defined previously (3.13). This is like the ordinary MSE, except the ith residual is divided
by 1−hi The leverage lies between 1/n and 1, and reflects the amount that an observation
influences its own fit. Hence the residuals for high-leverage points are inflated in this
formula by exactly the right amount for this equality to hold. LOOCV is a very general
method, and can be used with any kind of predictive modeling.

5.1.3 k-Fold Cross-Validation

k-fold CV involves randomly dividing the set of observations into k groups, or folds, of
approximately equal size. The first fold is treated as a validation set, and the method is
fit on the remaining k−1 folds, then the mean squared error is computed on the held-out
fold. This is repeated k times on different groups of observations.

CV(k) =
1

k

k∑
i=1

MSEi. (5.3)

LOOCV is a special case of k-fold CV in which k equals n. In practice, one typically
performs k-fold CV using k = 5 or k = 10 depending on computational costs and the
bias-variance trade-off. The actual estimate of the test MSE is may not be of interest,
and we’re instead interested in only in the location of the minimum point in the estimated
test MSE curve corresponding to the correct flexibility level.

5.1.4 Bias-Variance Trade-Off for k-Fold Cross-Validation

A more important advantage of k-fold CV is that it often gives more accurate estimates
of the test error rate than does LOOCV. This has to do with a bias-variance trade-off.
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Since LOOCV trains on n − 1 observations, it seems preferable to k-fold CV from the
perspective of bias reduction. However, we must also consider the procedure’s variance.
It turns out that LOOCV has higher variance than does k-fold CV with k < n.

When we perform LOOCV, we are in effect averaging the outputs of n fitted models, each
of which is trained on an almost identical set of observations; therefore, these outputs
are highly (positively) correlated with each other. In contrast, with k-fold CV we are
averaging the outputs of k fitted models that are somewhat less correlated with each
other, since the overlap between the training sets in each model is smaller. Since the
mean of many highly correlated quantities has higher variance than does the mean of
many quantities that are not as highly correlated, the test error estimate resulting from
LOOCV tends to have higher variance.

5.1.5 Cross-Validation on Classification Problems

Cross-validation can also be a very useful approach in the classification setting when Y
is qualitative. Rather than using MSE to quantify test error, we instead use the number
of misclassified observations. The LOOCV error rate becomes,

CV(n) =
1

n

n∑
i=1

Erri, (5.4)

where Erri = I(yi 6= ŷi). The k-fold CV error rate and validation set error rates are
defined analogously.

5.2 The Bootstrap

The bootstrap can be used to quantify the uncertainty associated with a given estimator or
statistical learning method, some for which a measure of variability is otherwise difficult
to obtain and is not automatically output by statistical software.

the bootstrap approach allows us to use a computer to emulate the process of obtaining
new sample sets. s. Rather than repeatedly obtaining independent data sets from the
population, we instead obtain distinct data sets by repeatedly sampling observations from
the original data set.

Given a simple data set Z that contains n observations, We randomly select n observations
from the data set in order to produce a bootstrap data set, Z∗1. The sampling is performed
with replacement, which means that the same observation can occur more than once. This
procedure is repeated B times for some large value of B, in order to produce B different
bootstrap data sets, Z∗1, Z∗2, . . . , Z∗B and B corresponding α estimates, α̂∗1, . . . , α̂∗B .
We can compute the standard error of these bootstrap estimates using the formula,

SEB(α̂) =

√√√√ 1

B − 1

B∑
r=1

(
α̂∗r − 1

B

B∑
r′=1

α̂∗r′
)2

. (5.5)
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6 Linear Model Selection and Regularization

Alternative fitting procedures to least squares can yield better prediction accuracy and
model interpretability.

Prediction Accuracy – If n, the number of observations, is much larger than p, the number
of variables, i.e. n >> p, then the least squares estimates tend to have low variance and
will perform well on test observations. If n is not much larger than p, then there can be
a lot of variability in the least squares fit, resulting in overfitting and poor predictions
on unseen future observations. If p > n, then there is no longer a unique least squares
coefficient estimate: the variance is infinite so the method cannot be used at all.

Model Interpretability – Often some or many of the variables used in a multiple regression
model are not associated with the response and their inclusion leads to unnecessary com-
plexity in the resulting model. By setting the corresponding coefficient estimates to zero,
we can obtain a model that is more easily interpreted. However, least squares is extremely
unlikely to yield any coefficient estimates that are exactly zero. There exist alternative
approaches for automatically performing feature selection or variable selection.

(a) Subset Selection – This approach involves identifying a subset of the p predictors
that we believe to be related to the response. We then fit a model using least squares
on the reduced set of variables.

(b) Shrinkage – This approach involves fitting a model involving all p predictors. How-
ever, the estimated coefficients are shrunken towards zero relative to the least squares
estimates which has the effect of reducing variance. Some coefficients may be esti-
mated to be exactly zero, resulting in variable selection.

(c) Dimension Reduction – This approach involves projecting the p predictors into a
M-dimensional subspace, where M < p. This is achieved by computing M different
linear combinations, or projections, of the variables. Then these M projections are
used as predictors to fit a linear regression model by least squares.

6.1 Subset Selection

6.1.1 Best Subset Selection

To perform best subset selection, we fit a separate least squares regression for each possible
combination of the p predictors. That is, we fit all p models that contain exactly one
predictor, then all

(
p
2

)
= p(p − 1)/2 models that contain exactly two predictors, and

so forth up to
(
p
2

)
. We then try to identify the one that is best model out of the 2p

possibilities. Here best is defined as having the smallest RSS, or equivalently largest R2.

The algorithm is as follows:

(a) Let M0 denote the null model, which contains no predictors. This model simply
predicts the sample mean for each observation.

(b) For k = 1, 2, ...p:

i. Fit all
(
p
k

)
models that contain exactly k predictors.
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ii. Pick the best among these
(
p
k

)
models, and call it Mk. Here best is defined as

having the smallest RSS, or equivalently largest R2.

(c) Select a single best model from among M0, . . . ,Mp using cross-validated prediction
error, Cp (AIC), BIC, or adjusted R2.

As the number of features included in the models increases, the RSS of these p+1 models
decreases monotonically, and the R2 increases monotonically which indicates a model
with a low training error, whereas we wish to choose a model that has a low test error.
So if we use these statistics to select the best model, then we will always end up with
a model involving all of the variables. This is why in in Step 3, we use cross-validated
prediction error in order to select among the models.

The same ideas used with least squares applies to other types of models, such as logistic
regression, where instead of ordering models by RSS in Step 2, we use the deviance, a
measure that plays the role of RSS for a broader class of models. The deviance is negative
two times the maximized log-likelihood; the smaller the deviance, the better the fit.

Best subset selection becomes computationally infeasible for values of p greater than
around 40.

6.1.2 Stepwise Selection

An enormous search space can lead to overfitting and high variance of the coefficient esti-
mates which makes stepwise methods, which explore a far more restricted set of models,
an attractive alternative to best subset selection.

Forward Stepwise Selection

Forward stepwise selection considers a much smaller set of models. begins with a model
containing no predictors, and then adds predictors to the model, one-at-a-time, until all
of the predictors are in the model. In particular, at each step the variable that gives the
greatest additional improvement to the fit is added to the model.

(a) Let M0 denote the null model, which contains no predictors.

(b) For k = 1, 2, ...p:

i. Consider all p−k models that augment the predictors in Mk with one additional
predictor.

ii. Choose the best among these p−k models, and call it Mk+1. Here best is defined
as having smallest RSS or highest R2.

(c) Select a single best model from among M0, . . . ,Mp using cross-validated prediction
error, Cp (AIC), BIC, or adjusted R2.

This amounts to a total of 1 +
∑p−1
k=0(p − k) = 1 + p(p − 1)/2 models, though it is not

guaranteed to find the best possible model out of all 2p models containing subsets of the
p predictors. In Step 3, we must identify the best model among a set of models with
different numbers of variables, presenting some challenges.
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Forward stepwise selection can be applied even in the high-dimensional setting where
n < p; however, in this case, it is possible to construct submodels M0, . . . ,Mn−1 only,
since each submodel is fit using least squares, which will not yield a unique solution if
p ≥ n.

Backward Stepwise Selection

Unlike forward stepwise selection, backward stepwise selection begins with the full least
squares model containing all p predictors, and then iteratively removes the least useful
predictor, one-at-a-time.

(a) Let M0 denote the null model, which contains no predictors.

(b) For k = p, p− 1, ...1:

i. Consider all k models that contain all but one of the predictors in Mk, for a
total of k − 1 predictors.

ii. Choose the best among these k models, and call it Mk+1. Here best is defined
as having smallest RSS or highest R2.

(c) Select a single best model from among M0, . . . ,Mp using cross-validated prediction
error, Cp (AIC), BIC, or adjusted R2.

This produces the same number of models as forward selection, i.e. 1 +
∑p−1
k=0(p−k), and

is also not guaranteed to yield the best model containing a subset of the p predictors.

Hybrid Approaches

Hybrid versions of forward and backward stepwise selection are available, in which vari-
ables are added to the model sequentially, as in forward selection, and after adding each
new variable, the method may also remove any variables that no longer provide an im-
provement in the model fit, as in backward selection.

6.1.3 Choosing the Optimal Model

If we wish to choose a model with a low test error, the training error can be a poor
estimate of the test error. Therefore, RSS and R2 are not suitable for selecting the best
mode among a collection of models with different numbers of predictors. There are two
common approaches to estimate this test error:

(a) We can indirectly estimate test error by making an adjustment to the training error
to account for the bias due to overfitting.

(b) We can directly estimate the test error, using either a validation set approach or a
cross-validation approach.
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Cp, AIC, BIC, and Adjusted R2

Using least squares, we estimate the regression coefficients such that the training RSS
(but not the test RSS) is as small as possible. So the training error will decrease as more
variables are included in the model, but the test error may not. We now consider four
alternative approaches: Cp, Akaike information criterion (AIC), Bayesian information
criterion (BIC), and adjusted R2.

For a fitted least squares model containing d predictors, the Cp estimate of test MSE is
computed using the equation,

Cp =
1

n
(RSS + 2dσ̂2) (6.1)

where σ̂2 is an unbiased estimate of the variance of the error ε associated with each
response measurement in the standard linear model. Essentially, the Cp statistic adds
a penalty of 2dσ̂2 to the training RSS in order to adjust for the fact that the training
error tends to underestimate the test error, where the penalty increases as the number of
predictors in the model increases. When determining which of a set of models is best, we
choose the model with the lowest Cp value.

The AIC criterion is defined for a large class of models fit by maximum likelihood In the
case of the model with Gaussian errors, maximum likelihood and least squares are the
same thing. In this case AIC is given by

AIC =
1

nσ̂2
(RSS + 2dσ̂2) (6.2)

BIC is derived from a Bayesian point of view, but ends up looking similar to Cp (and
AIC) as well. For the least squares model with d predictors, the BIC is, up to irrelevant
constants, given by

BIC =
1

nσ̂2
(RSS + log(n)dσ̂2) (6.3)

Like Cp, we select the model that has the lowest BIC value. Since log n > 2 for any n > 7,
the BIC statistic generally places a heavier penalty on models with many variables.

The adjusted R2 statistic is another popular approach for selecting among a set of
models that contain different numbers of variables. Recall the usual R2 is defined as
1 − RSS/TSS, which always decreases as more variables are added to the mode. For a
least squares model with d variables, the adjusted R2 statistic is calculated as,

Adjusted R2 = 1− RSS/(n− d− 1)

TSS/(n− 1)
(6.4)

Here, a large value of adjusted R2 indicates a model with a small test error. The intuition
behind the adjusted R2 is that once all of the correct variables have been included in
the model, adding additional noise variables will increase d and increase the denominater
while only leading to only a very small decrease in RSS.

38



Validation and Cross-Validation

AIC, BIC, and Cp can also be defined for more general types of models. As an alternative
to the approaches just discussed, We can compute the validation set error or the cross-
validation error for each model under consideration, and then select the model for which
the resulting estimated test error is smallest. This has the advantage of providing a direct
estimate of the test error, and makes fewer assumptions about the true underlying model.
It can also be used in a wider range of model selection tasks where it is hard to pinpoint
the model degrees of freedom i.e. predictors, or to estimate the error variance σ2.

In the one-standard-error rule, we first calculate the standard error of the estimated test
MSE for each model size, and then select the smallest model for which the estimated test
error is within one standard error of the lowest point on the curve. The rationale here
is that if a set of models appear to be more or less equally good, then we might as well
choose the simplest model—that is, the model with the smallest number of predictors.

6.2 Shrinkage Methods

As an alternative, we can fit a model containing all p predictors using a technique that
constrains or regularizes the coefficient estimates, or equivalently, that shrinks the co-
efficient estimates towards zero, which can significantly reduce their variance. The two
best-known techniques for shrinking the regression coefficients towards zero are ridge
regression and the lasso

6.2.1 Ridge Regression

Recall the least squares fitting procedure estimates coefficients βj that minimize the RSS
(3.3). Similarly, Ride Regression estimates the coefficients BR that minimize,

RSS + λ+ λ

p∑
j=1

β2
j =

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

β2
j , (6.5)

where λ ≥ 0 is a tuning parameter, to be determined separately. the second term λ
∑
β2
j ,

called a shrinkage penalty, is small when β1, . . . , βp are close to zero, and so it has the effect
of shrinking the estimates of βj towards zero. The tuning parameter λ serves to control
the relative impact of these two terms on the regression coefficient estimates excluding
the intercept coefficient β0. Ridge regression will produce a different set of coefficient
estimates, βRλ , for each value of λ, so selecting a good value tuning parameter via cross
validation is critical.

The value Xjβ
R
j,λ will not only depend on the value of λ, but also on the scaling of

the jth predictor. In fact, the value of Xjβ
R
j,λ may even depend on the scaling of the

other predictors. Therefore, it is best to apply ridge regression after standardizing the
predictors by applying the estimated standard deviation of the jth predictor with the
formula,

x̃ij =
xij√

1
n

∑
i = 1n(xij − x̄j)2

. (6.6)
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Ridge regression’s advantage over least squares is rooted in the bias-variance trade-of.
As λ increases, the flexibility of the ridge regression fit decreases, leading to decreased
variance but increased bias. This leads to a decrease in the mean squared error (MSE),
which is a function of the variance plus the squared bias.

When the number of variables p is almost as large as the number of observations n, the
least squares estimates will be extremely variable. And if p > n, then the least squares
estimates do not even have a unique solution, whereas ridge regression can still perform
well by trading off a small increase in bias for a large decrease in variance. Hence, ridge
regression works best in situations where the least squares estimates have high variance.

Though the penalty can shrink some of the coefficients towards zero, ridge regression
will include all p predictors in the final model. This can create a challenge in model
interpretation

6.2.2 The Lasso

The lasso is a relatively recent alternative to ridge regression that overcomes the disadvan-
tage of uninterpretable models with a large number of predictors. The lasso coefficients,

β̃Lλ , minimize the quantity

RSS + λ

p∑
j=1

|βj | =
n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

|βj |. (6.7)

The difference between ridge regression and lasso is the penalty β2
j has been replaced

with |βj |. The lasso uses an `1 (pronounced “ell 1”) penalty instead of an `2 penalty.
The `1 norm of a coefficient vector β is given by ||β||1 =

∑
|βj |. This has the effect

of forcing some of the coefficient estimates to be exactly equal to zero when the tuning
parameter λ is sufficiently large. Thus, the lasso performs variable selection, resulting in
more interpretable and sparse models, involving only a subset of the variables.

The Variable Selection Property of the Lasso

When we perform the lasso we are trying to find the set of coefficient estimates that
lead to the smallest RSS, subject to the constraint that there is a budget s for how large∑p
j=1 |βj | can be. Ridge regression more or less shrinks every dimension of the data by

the same proportion, whereas the lasso more or less shrinks all coefficients toward zero
by a similar amount, and sufficiently small coefficients are shrunken all the way to zero,
known as soft thresholding.

Comparing the Lasso and Ridge Regression

Neither ridge regression nor the lasso will universally dominate the other. In general, one
might expect the lasso to perform better in a setting where a relatively small number of
predictors have substantial coefficients, and the remaining predictors have coefficients that
are very small or that equal zero. Ridge regression will perform better when the response
is a function of many predictors, all with coefficients of roughly equal size. However,
the number of predictors that is related to the response is never known a priori for real
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data sets. A technique such as cross-validation can be used in order to determine which
approach is better on a particular data set.

Bayesian Interpretation for Ridge Regression and the Lasso

A Bayesian viewpoint for regression assumes that the coefficient vector β has some prior
distribution, say p(β), where β = (β0, . . . , βp)

T . The likelihood of the data is f(Y |X,β)
where X = (X1, . . . , Xp)

T . Multiplying the prior distribution by the likelihood gives us
the posterior distribution,

p(β|X,Y ) ∝ f(Y |X,β)p(β|X) = f(Y |X,β)p(β), (6.8)

which follows from Bayes’ theorem. We assume the usual linear model, and suppose
that the errors are independent and drawn from a normal distribution. We also assume
p(β) =

∏p
+j = 1g(βj), for some density function g. Then, ridge regression and the lasso

follow from two special cases of g:

(a) If g is a Gaussian distribution with mean zero and standard deviation a function
of λ, then it follows that the posterior mode for β, i.e. the most likely value for β,
given the data, is given by the ridge regression solution.

(b) If g is a double-exponential (Laplace) distribution with mean zero and scale pa-
rameter a function of λ, then it follows that the posterior mode for β is the lasso
solution.

6.2.3 Selecting the Tuning Parameter

Implementing ridge regression and the lasso requires a method for selecting a value for
the tuning parameter λ. Cross-validation provides a simple way to tackle this problem.
We choose a grid of λ values, and compute the cross-validation error for each value of λ.
We then select the tuning parameter value for which the cross-validation error is smallest.
Finally, the model is re-fit using all of the available observations and the selected value
of the tuning parameter.

6.3 Dimension Reduction Methods

Dimension reduction methods transform the predictors and then fit a least squares model
using the transformed variables. Let Z1, Z2, . . . , ZM represent M < p linear combinations
of our original p predictors. That is,

Zm =

p∑
j=0

φjmXj (6.9)

for some constants φ1m, φ2m, . . . , φpm,m = 1, ...,M . We can then fit the linear regression
model,

yi = θ0 +

M∑
m=1

θmzim + εi, i = 1, . . . , n (6.10)
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using least squares, which can possibly outperform the standard linear model with wisely
chosen coefficients. The term dimension reduction comes from the fact that this approach
reduces the problem of estimating the p+1 to M+1 coefficients, where M < p. The model
can be thought of as a special case of the linear model, with coeffecients θm being related
by βj =

∑M
m=1 θmφjm. Methods for obtaining the tranformed predictors are examined

next.

6.3.1 Principal Component Regression

Principal components analysis (PCA) is a popular approach for deriving a low-dimensional
set of features from a large set of variables and is examined in more detail later. PCA is
a technique for reducing the dimension of a n× n data matrix X.

The first principal component, Z1, moves along the data in the direction which the obser-
vations vary the most, where directions corresponds to linear combinations. Alternatively,
we can think of the first principal component as a vector that defines the line that is as
close as possible to the data. The first principal component score measures this distance
by selecting linear combinations of Xi, Xj predictors with σ2

11 + σ2
21 = 1 that yield the

highest variance. With two-dimensional data and two predictors X1, X2, this looks like,

Z1 = V ar(σ11 × (X1 − X̄) + σ21 × (X2 − X̄)). (6.11)

The second principal component Z2 is a linear combination of the variables that are
uncorrelated with Z1, and has largest variance subject to this constraint, i.e. the direction
must be perpendicular, or perpendicular orthogonal, to the first principal component
direction.

Z2 = V ar(σ21 × (X1 − X̄) + σ11 × (X2 − X̄)) (6.12)

With more predictors, additional components could be constructed. They would suc-
cessively maximize variance, subject to the constraint of being uncorrelated with the
preceding components.

The Principal Components Regression Approach

The principal components regression (PCR) approach involves constructing the first M
principal components, Z1, . . . , ZM , and then using these components as the predictors in
a linear regression model that is fit using least squares. Often a small number of principal
components suffice to explain most of the variability in the data, as well as the relationship
with the response, i.e. the directions in which X1, ..., Xp show the most variation are the
directions that are associated with Y . If this assumption holds, our PCR model will lead
to better results since using less coefficients will mitigate overfitting. PCR will tend to
do well in cases when the first few principal components are sufficient to capture most of
the variation in the predictors as well as the relationship with the response.

Yet PCR is not considered a feature selection method, since the M principal components
used in the regression is a linear combination of all p of the original features. In this sense,
PCR is more closely related to ridge regression than to the lasso, where ridge regression
can be thought of as a continuous version of PCR. It’s recommended to standardize each
predictor prior to generating the principal components with PCR because high-variance
variables will tend to play a larger role in the principal components obtained
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The directions or linear combinations are identified in an unsupervised way, since the
response Y is not used to help determine or supervise the indentification of the princi-
pal component directions. Consequently, PCR suffers from the drawback that there is
no guarantee that the directions that best explain the predictors will also be the best
directions to use for predicting the response.

6.3.2 Partial Least Squares

Partial least squares (PLS) is a supervised alternative to PCR. That is, PLS is also a
dimension reduction method which identifies a set of features that are linear combinations
of the original features and then fits a linear model via least squares. But unlike PCR,
PLS uses a supervised method to identifiy features that not only approximate the old
features well, but also that are related to the response by attempting to find directions
that help explain both the response and the predictors.

After standardizing the p predictors, PLS computes the first direction Z1 by setting
each φj1 in the dimension reduction features equal to the coefficient from the simple
linear regression of Y onto Xj . One can show that this coefficient is proportional to the
correlation between Y and Xj . Hence, in computing Z1 =

∑p
j=1 φj1Xj , PLS places the

highest weight on the variables that are most strongly related to the response.

To identify the second PLS direction we first adjust each of the variables for Z1, by
regressing each variable on Z1 and taking residuals. These residuals can be interpreted
as the remaining information that has not been explained by the first PLS direction. We
then compute Z2 using this orthogonalized data in exactly the same fashion as Z1 was
computed based on the original data. This iterative approach can be repeated M times
to identify multiple PLS components Z1, . . . , ZM . Finally, at the end of this procedure,
we use least squares to fit a linear model to predict Y using Z1, . . . , ZM in exactly the
same fashion as for PCR. As with PCR, the number M of partial least squares directions
used in PLS is a tuning parameter that is typically chosen by cross-validation.

In practice PLS often performs no better than ridge regression or PCR. While the super-
vised dimension reduction of PLS can reduce bias, it also has the potential to increase
variance.

6.4 Considerations in High Dimensions

6.4.1 High-Dimensional Data

A low-dimensional setting is one in which n, the number of observations, is much greater
than p, the number of features, i.e. n >> p.

Data sets containing more features than observations are often referred to as high-dimensional.
Classical approaches such as least squares linear regression are not appropriate in this
setting. Challenges like the bias-variance trade-off and the danger of overfitting are still
relevant and can become particularly important in this setting.
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6.4.2 What Goes Wrong in High Dimensions?

When the number of features p is as large as, or larger than, the number of observations
n, least squares should not be performed. Regardless of whether or not there truly is
a relationship between the features and the response, least squares will yield a set of
coefficient estimates that result in a perfect fit to the data, such that the residuals are
zero. When p > n or p ≈ n, a simple least squares regression line is too flexible and hence
overfits the data.

Care must be taken when analyzing data sets with a large number of variables, accurate
evaluations of models performance must be done on an independent test set, otherwise
the training set MSE can create false confidence.

Additionally, techniques visited earlier, like Cp, AIC, and BIC, which were useful for
adjusting the training set RSS or R2 in order to account for the number of variables used
to fit a least squares model are also not appropriate in the high-dimensional setting. This
is because estimating σ̂2 can be problematic and one can easily obtain a model with an
adjusted R2 value of 1.

6.4.3 Regression in High Dimensions

We can avoid overfitting by using a less flexible fitting approach than least squares. For-
ward stepwise selection, ridge regression, the lasso, and principal components regression,
are particularly useful for performing regression in the high-dimensional setting

We find that (1) regularization or shrinkage plays a key role in high-dimensional problems,
(2) appropriate tuning parameter selection is crucial for good predictive performance, and
(3) the test error tends to increase as the dimensionality of the problem (i.e. the number
of features or predictors) increases, unless the additional features are truly associated with
the response) this is also known as the curse of dimensionality. noise features increase
the dimensionality of the problem, exacerbating the risk of overfitting. Even if excess
features are relevant, the variance incurred in fitting their coefficients may outweigh the
reduction in bias that they bring.

6.4.4 Interpreting Results in High Dimensions

In the high-dimensional setting, the multicollinearity problem is extreme: any variable
in the model can be written as a linear combination of all of the other variables in the
model. This means that we can never know exactly which variables truly are predictive
of the outcome, and we can never identify the best coefficients for use in the regression
and can only hope to assign appropriate regression coefficients to correlated variables.

As mentioned before, one should never use sum of squared errors, p-values, R2 statistics
or other traditional measures of model fit on the training data as evidence of a good
model fit in the high-dimensional setting. It is important to instead report results on
an independent test set, or cross-validation errors. For instance, the MSE or R2 on an
independent test set is a valid measure of model fit, but the MSE on the training set is
not.
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7 Moving Beyond Linearity

Although However, standard linear regression can have have advantages over other ap-
proaches in terms of interpretation and inference, it has significant limitations in terms
of predictive power because the linearity assumption is almost always an approximation,
and sometimes a poor one.

• Polynomial regression extends the linear model by adding extra predictors, obtained
by raising each of the original predictors to a power. This approach provides a simple
way to provide a nonlinear fit to data.

• Step functions cut the range of a variable into K distinct regions in order to produce
a qualitative variable. This has the effect of fitting a piecewise constant function.

• Regression splines are more flexible than polynomials and step functions, and in fact
are an extension of the two. They involve dividing the range of X into K distinct
regions. Within each region, a polynomial function is fit to the data. However, these
polynomials are constrained so that they join smoothly at the region boundaries, or
knots. Provided that the interval is divided into enough regions, this can produce
an extremely flexible fit.

• Smoothing splines are similar to regression splines, but arise in a slightly different sit-
uation. Smoothing splines result from minimizing a residual sum of squares criterion
subject to a smoothness penalty.

• Local regression is similar to splines, but differs in an important way. The regions
are allowed to overlap, and indeed they do so in a very smooth way.

• Generalized additive models allow us to extend the methods above to deal with
multiple predictors.

7.1 Polynomial Regression

Historically, the way to extend linear regression was to replace the standard linear model,

yi = β0 + β1xi + εi

with with a polynomial function,

yi = β0 + β1xi + β2x
2
i + · · ·+ βdx

d
i + εi (7.1)

in an approach known as polynomial regression. Using a large enough degree d, a poly-
nomial regression allows us to produce an extremely non-linear curve but in General, it
is unusual to use d greater than 3 or 4 because for large values of d, the polynomial curve
can become overly flexible and can take on some very strange shapes. This is especially
true near the boundary of the X variable.

7.2 Step Functions

Using polynomial functions of the features as predictors in a linear model imposes a global
structure on the non-linear function of X. We can instead use step functions in order to
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avoid imposing such a global structure. We break the range of X into bins, and fit a
different constant in each bin. This amounts to converting a continuous variable into an
ordered categorical variable.

We create cutpoints c1, c2, . . . , cK in the range of X, and then construct K + 1 new
variables, sometimes called dummy variables,

C0(X) = I(X < c1),

C1(X) = I(c1 ≤ X < c2),

C2(X) = I(c2 ≤ X < c3),

...

CK−1(X) = I(cK−1 ≤ X < cK),

CK(X) = I(cK ≤ X),

(7.2)

where I() is an indicator function that returns a 1 if the condition is true, and 0 otherwise.
Notice that for any value of X, C0(X) + C1(X) + · · ·+ CK(X) = 1, since X must be in
exactly one of the K + 1 intervals. We then use least squares to fit a linear model using
C1(X), C2(X), . . . , CK(X) as predictors:

yi = β0 + β1C1(xi) + β2C2(xi) + · · ·+ βKCK(xi) + i. (7.3)

Note that when X < c1, all of the predictors in the above equation are zero, so β0 can
be interpreted as the mean value of Y for X < c1. Then the model predicts a response
of β0 + βj for cj ≤ X < cj + 1. So βj represents the average increase in the response for
X in cj ≤ X < cj + 1 relative to X < c1.

Unfortunately, unless there are natural breakpoints in the predictors, piecewise-constant
functions can miss the action. Nevertheless, step function approaches are very popular in
biostatistics and epidemiology, among other disciplines. For example, 5-year age groups
are often used to define the bins.

7.3 Basis Functions

Polynomial and piecewise-constant regression models are in fact special cases of a basis
function approach. The idea is to have at hand a family of functions or transformations
that can be applied to a variable X: b1(X), b2(X), . . . , bK(X). Instead of fitting a linear
model in X, we fit the model

yi = β0 + β1b1(xi) + β2b2(xi) + · · ·+ βKbK(xi) + εi. (7.4)

Note that the basis functions b1(), b2(), . . . , bK() are fixed and known ahead of time. We
can think of the model as a standard linear model with predictors b1(xi), b2(xi), . . . , bK(xi).
Hence, we can use least squares to estimate the unknown regression coefficients in the
model. Importantly, this means that all of the inference tools for linear models, such
as standard errors for the coefficient estimates and F-statistics for the model’s overall
significance, are also available in this setting.

For polynomial regression, the basis functions are bj(xi) = xji , and for piecewise constant
functions they are bj(xi) = I(cj ≤ xi < cj+1). Many alternatives for our basis functions
are possible like wavelets or Fourier series or the very common choice of regression splines.
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7.4 Regression Splines

Regression splines are a flexible class of basis functions that extends upon the polynomial
regression and piecewise constant regression approaches.

7.4.1 Piecewise Polynomials

7.4.2 Constraints and Splines

7.4.3 The Spline Basis Representation

7.4.4 Choosing the Number and Locations of the Knots

7.4.5 Comparison to Polynomial Regression

7.5 Smoothing Splines

7.5.1 An Overview of Smoothing Splines

7.5.2 Choosing the Smoothing Parameter λ

7.6 Local Regression

7.7 Generalized Additive Models

7.7.1 GAMs for Regression Problems

7.7.2 GAMs for Classification Problems
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8 Tree-based Methods
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