
SQL Notes

Contents

1 Pre-requsite Concepts 2
1.1 Types of SQL Commands . 2
1.2 ACID (SQL) . 2
1.3 Primary and Foreign Keys . 3
1.4 Normalized Data . 3
1.5 Derived Data, Joins, Materialized Views . 3
1.6 Index and Secondary Index . 3
1.7 Distributed Databases . 4

2 Reading Data 5
2.1 SELECT Statement . 5

2.1.1 Select all . 5
2.1.2 Select specific columns . 5
2.1.3 De-duplicate rows . 5
2.1.4 Aliasing . 5

2.2 WHERE, Conditions and Comparators . 5
2.2.1 Numeric comparison . 5
2.2.2 String comparison . 6
2.2.3 AND and OR . 6
2.2.4 In a given list of values . 6
2.2.5 Inclusive ranges . 6
2.2.6 Exists, Any, All . 7

2.3 String Pattern Matching . 7
2.3.1 Quotes . 7
2.3.2 LIKE string operators . 7

2.4 Operations on Retrieved Records . 8
2.4.1 Sort rows . 8
2.4.2 Limit the number of rows . 8
2.4.3 Filter rows . 8

2.5 Aggregate Functions . 8
2.5.1 The COUNT Function . 8
2.5.2 NULLS . 9
2.5.3 Subsets . 9
2.5.4 Cumulative Sum . 9
2.5.5 CASE WHEN . 10
2.5.6 The GROUP BY Block . 11
2.5.7 The HAVING Block . 11
2.5.8 Averages . 11
2.5.9 Rolling Average . 12
2.5.10 Percentage . 12
2.5.11 MoM Percent Change . 12
2.5.12 Retained Users Per Month . 13

2.6 Joining Tables . 14
2.6.1 Nested Queries . 14
2.6.2 MapReduce . 14
2.6.3 Union . 14

1

2.6.4 Joins . 14
2.6.5 Self Joins . 16
2.6.6 Multiple Join Conditions . 16
2.6.7 Cross-Joins . 17

2.7 Window Function . 18
2.7.1 Get the ID with the highest value . 18

2.8 Materialized Views . 18

3 Writing Data 19
3.1 Databases . 19

3.1.1 Create database . 19
3.1.2 Delete database . 19

3.2 Tables . 19
3.2.1 Data types . 19
3.2.2 Constraints . 19
3.2.3 Creating tables . 20
3.2.4 Alter table . 20
3.2.5 Deleting tables . 20

3.3 Indexes . 20
3.3.1 B-Trees . 21
3.3.2 Create index . 21
3.3.3 Delete index . 21

3.4 Records . 21
3.4.1 Insert Records . 21
3.4.2 Update Records . 22
3.4.3 Delete Records . 22
3.4.4 Copy with select and insert . 22

4 Transactions 23
4.1 COMMIT . 23
4.2 ROLLBACK . 23
4.3 SAVEPOINT . 23
4.4 SET TRANSACTION . 24

2

1 Pre-requsite Concepts

1.1 Types of SQL Commands

SQL commands are mainly categorized into four categories as:

1. DDL – Data Definition Language

2. DQl – Data Query Language

3. DML – Data Manipulation Language

4. DCL – Data Control Language

5. TCL – Transaction Control Language

1.2 ACID (SQL)

1. Atomicity – All operations in a transaction succeed or every operation is rolled back.

2. Consistency – On the completion of a transaction, the database is structurally sound.

3. Isolation – Transactions do not contend with one another. Contentious access to data
is moderated by the database so that transactions appear to run sequentially.

4. Durability – The results of applying a transaction are permanent, even in the presence
of failures.

3

1.3 Primary and Foreign Keys

A primary key is a value (typically a number or a string) that uniquely identifies a record. In
many applications, primary keys are generated by the system when a record is created (e.g.,
sequentially or randomly); they are not usually set by users.

A foreign key is a column or group of columns in a relational database table that provides a
link between data in two tables. It acts as a cross-reference between tables because it references
the primary key of another table, thereby establishing a link between them

The more ids required to get to a piece of data, the more options you have in partitioning the
data. The fewer ids required to get a piece of data, the easier it is to consume your system’s
output.

Watch out for what kind of information you encode in your ids, explicitly and implicitly. Clients
may use the structure of your ids to de-anonymize private data, crawl your system in unexpected
ways (auto-incrementing ids are a typical sore point), or perform a host of other attacks.

1.4 Normalized Data

Normalized Data is structured in such a way that there is no redundancy or duplication. In
a normalized database, when some piece of data changes, you only need to change it in one
place, not many copies in many different places.

1.5 Derived Data, Joins, Materialized Views

A derived dataset is created from some other data through a repeatable process, which you
could run again if necessary. Usually, derived data is needed to speed up a particular kind of
read access to the data. Indexes, caches, and materialized views are examples of derived data.

A join brings together records that have something in common. Most commonly used in the
case where one record has a reference to another (a foreign key, a document reference, an edge
in a graph) and a query needs to get the record that the reference points to.

To materialize means to perform a computation preemptively and write out its result, as op-
posed to calculating it on demand when requested.

1.6 Index and Secondary Index

Indexing is a way to get an unordered table into an order that will maximize the query’s
efficiency while searching. An index creates a data structure, typically a B-tree, with values
from a specific column. It may then use a search algorithm, typically binary search, to find the
value and return a pointer to its true index in the unordered table.

A secondary index is an additional data structure that is maintained alongside the primary
data storage and which allows you to efficiently search for records that match a certain kind of
condition.

4

1.7 Distributed Databases

See Distributed Systems Notebook1.

1https://github.com/lukepereira/notebooks

5

2 Reading Data

2.1 SELECT Statement

2.1.1 Select all

1 SELECT *

2 FROM students;

2.1.2 Select specific columns

1 SELECT name , age

2 FROM students;

2.1.3 De-duplicate rows

1 SELECT DISTINCT name

2 FROM students;

2.1.4 Aliasing

In the SELECT block, <expression> AS <alias> provides an alias that can be referred to later
in the query. This saves us from having to write out long expressions again, and can clarify the
purpose of the expression.

1 SELECT name , age , location AS personal_info

2 FROM students;

2.2 WHERE, Conditions and Comparators

2.2.1 Numeric comparison

1 = /* equals */

2 < /* less -than */

3 <= /* less -than or equals */

4 > /* greater -than */

5 >= /* greater -than or equals */

6 != /* does not equal */

7 <> /* does not equal */

6

2.2.2 String comparison

Note that string values in the condition should be put between single quotes. Also note that
any uppercase letter is smaller (i.e. comes before) any lowercase letter.

1 = /* equals */

2 < /* before in dictionary order */

3 <= /* before or the same */

4 > /* after in dictionary order */

5 >= /* after or the same */

6 != /* does not equal */

7 <> /* does not equal */

2.2.3 AND and OR

Complex clauses can be made out of simple ones using Boolean operators like NOT, AND and
OR. SQL gives most precedence to NOT and then AND and finally OR. But if you’re too lazy
to remember the order of precedence, you can use parenthesis to clarify the order you want.

1 SELECT product

2 FROM inventory

3 WHERE amount < 5

4 OR name = 'paper '
5 AND price > 1;

When using both AND and OR it’s important to know that AND has higher precedence.

If we want the OR to be evaluated first, we can use brackets ().

1 SELECT product

2 FROM inventory

3 WHERE (amount < 5

4 OR name = 'paper ')
5 AND price > 1;

2.2.4 In a given list of values

1 SELECT product

2 FROM inventory

3 WHERE amount IN (1, 5, 10);

2.2.5 Inclusive ranges

7

1 SELECT product

2 FROM inventory

3 WHERE amount BETWEEN 5 AND 9;

is the equivalent condition to

1 SELECT product

2 FROM inventory

3 WHERE amount >= 5 AND amount <= 9

2.2.6 Exists, Any, All

1 SELECT column_name(s)

2 FROM table_name

3 WHERE EXISTS

4 (SELECT column_name FROM table_name WHERE condition);

1 SELECT column_name(s)

2 FROM table_name

3 WHERE column_name operator ANY

4 (SELECT column_name FROM table_name WHERE condition);

1 SELECT column_name(s)

2 FROM table_name

3 WHERE column_name operator ALL

4 (SELECT column_name FROM table_name WHERE condition);

2.3 String Pattern Matching

2.3.1 Quotes

In SQL, strings are denoted by single quotes. Backticks can be used to denote column and
table names. This is useful when the column or table name is the same as a SQL keyword and
when they have a space in them.

2.3.2 LIKE string operators

The most powerful string operators is probably LIKE. It allows us to use wildcards such as %
and to match various characters. For instance, first name LIKE ’%roy’ will return true for
rows with first names ‘roy’, ‘Troy’, and ‘Deroy’ but not ‘royman’. The wildcard will match a
single character so first name LIKE ’ roy’ will only match ‘Troy’.

8

1 SELECT first_name , last_name , ex_number

2 FROM executions

3 WHERE first_name = 'Raymond '
4 AND last_name LIKE '%Landry%'

2.4 Operations on Retrieved Records

2.4.1 Sort rows

1 SELECT name , age

2 FROM friends

3 ORDER BY name , age DESC , last_name ASC;

2.4.2 Limit the number of rows

1 SELECT name , grade

2 FROM course_grades

3 ORDER BY grade DESC

4 LIMIT 5;

2.4.3 Filter rows

1 SELECT product

2 FROM inventory

3 WHERE code = 'ABC123 ';

2.5 Aggregate Functions

To aggregate means to combine multiple elements into a whole. Similarly, aggregation functions
take multiple rows of data and combine them into one number.

2.5.1 The COUNT Function

COUNT(<column>) returns the number of non-null rows in the column.

1 SELECT COUNT(first_name) FROM executions

9

2.5.2 NULLS

In SQL, NULL is the value of an empty entry. This is different from the empty string ‘’ and
the integer 0, both of which are not considered NULL. To check if an entry is NULL, use IS
and IS NOT instead of = and !=.

What if we don’t know which columns are NULL-free? Worse still, what if none of the columns
are NULL-free? The solution is COUNT(). This is reminiscent of SELECT where the ×
represents all columns. In practice COUNT() counts rows as long as any one of their columns
is non-null. This helps us find table lengths because a table shouldn’t have rows that are
completely null.

1 SELECT COUNT (*) FROM executions

2.5.3 Subsets

Another common variation is to count a subset of the table. For instance, counting Harris
county executions.

1 SELECT COUNT (*) FROM executions WHERE county='Harris '

2.5.4 Cumulative Sum

Write a query to get cumulative cash flow for each day such that we end up with a table in the
form below:

1 /*

2 | date | cumulative_cf |

3 |------------|---------------|

4 | 2018 -01 -01 | -1000 |

5 | 2018 -01 -03 | -1050 |

6 | ... | ... |

7 */

8 SELECT

9 a.date date ,

10 SUM(b.cash_flow) as cumulative_cf

11 FROM

12 transactions a

13 JOIN b

14 transactions b ON a.date >= b.date

15 GROUP BY

16 a.date

17 ORDER BY

18 date ASC

19 /*

20 Alternate solution using a window function (more efficient !)

10

21 */

22

23 SELECT

24 date ,

25 SUM(cash_flow) OVER (ORDER BY date ASC) as cumulative_cf

26 FROM

27 transactions

28 ORDER BY

29 date ASC

2.5.5 CASE WHEN

What if we want to simultaneously find the number of Bexar county executions? The solution
is to apply a CASE WHEN block which acts as a big if-else statement.

1 CASE

2 WHEN <clause > THEN <result >

3 WHEN <clause > THEN <result >

4 ...

5 ELSE <result >

6 END

A common mistake is to miss out the END command and the ELSE condition which is a
catchall in case all the prior clauses are false. Also recall that clauses are expressions that can
be evaluated to be true or false. This makes it important to think about the boolean value of
whatever you stuff in there.

1 SELECT

2 SUM(CASE WHEN county='Harris ' THEN 1

3 ELSE 0 END),

4 SUM(CASE WHEN county='Bexar ' THEN 1

5 ELSE 0 END)

6 FROM executions

1 SELECT

2 COUNT(CASE WHEN county='Harris ' THEN 1

3 ELSE NULL END),

4 COUNT(CASE WHEN county='Bexar ' THEN 1

5 ELSE NULL END)

6 FROM executions

1. With a WHERE block,

2. With a COUNT and CASE WHEN block,

3. With two COUNT functions.

11

The WHERE version had it filter down to a small table first before aggregating while in the
other two, it had to look through the full table. In the COUNT + CASE WHEN version, it
only had to go through once, while the double COUNT version made it go through twice. So
even though the output was identical, the performance was probably best in the first and worse
in the other versions.

2.5.6 The GROUP BY Block

The GROUP BY block allows us to split up the dataset and apply aggregate functions within
each group, resulting in one row per group. Its most basic form is GROUP BY <column>,
<column>, ... and comes after the WHERE block.

1 SELECT

2 county ,

3 COUNT (*) AS county_executions

4 FROM executions

5 GROUP BY county

Filtering via the WHERE block happens before grouping and aggregation. This is reflected in
the order of syntax. After all, the WHERE block always precedes the GROUP BY block.

We generally do not want to mix aggregated and non-aggregated columns. The difference here
is that grouping columns are the only columns allowed to be non-aggregate. After all, all the
rows in that group must have the same values on those columns so there’s no ambiguity in the
value that should be returned.

2.5.7 The HAVING Block

What happens if we want to filter on the result of the grouping and aggregation? Surely we
can’t jump forward into the future and grab information from there. To solve this problem, we
use HAVING.

We need an additional filter—one that uses the result of the aggregation. This means it cannot
exist in the WHERE block because those filters are run before aggregation. You can think of
it as a post-aggregation WHERE block.

1 SELECT county

2 FROM executions

3 WHERE ex_age >= 50

4 GROUP BY county

5 HAVING COUNT (*) > 2

2.5.8 Averages

Note: you can compose functions.

12

1 SELECT AVG(LENGTH(last_statement)) FROM executions

2.5.9 Rolling Average

To write a query to get 7-day rolling (preceding) average of daily sign ups.

1 /*

2 | date | sign_ups |

3 |------------|----------|

4 | 2018 -01 -01 | 10 |

5 | 2018 -01 -02 | 20 |

6 | 2018 -01 -03 | 50 |

7 | ... | ... |

8 | 2018 -10 -01 | 35 |

9 */

10

11 SELECT

12 a.date ,

13 AVG(b.sign_ups) average_sign_ups

14 FROM

15 signups a

16 JOIN

17 signups b

18 ON a.date <= b.date + interval '6 days'
19 AND a.date >= b.date

20 GROUP BY

21 a.date

2.5.10 Percentage

To calculate percentages, we need two separate queries, one which aggregates with a GROUP
BY (to get the numerator) and another that aggregates without (to get the denominator).

1 SELECT

2 county ,

3 100.0 * COUNT (*) / (SELECT COUNT (*) FROM executions)

4 AS percentage

5 FROM executions

6 GROUP BY county

7 ORDER BY percentage DESC

2.5.11 MoM Percent Change

Find the month-over-month percentage change for monthly active users (MAU).

13

1 /*

2 | user_id | date |

3 |---------|------------|

4 | 1 | 2018 -07 -01 |

5 | 3 | 2018 -07 -02 |

6 | ... | ... |

7 | 234 | 2018 -10 -04 |

8 */

9

10 WITH mau AS

11 (

12 SELECT

13 DATE_TRUNC('month ', date) month_timestamp ,

14 COUNT(DISTINCT user_id) mau

15 FROM

16 logins

17 GROUP BY

18 DATE_TRUNC('month ', date)

19)

20 SELECT

21 a.month_timestamp previous_month ,

22 a.mau previous_mau ,

23 b.month_timestamp current_month ,

24 b.mau current_mau ,

25 ROUND (100.0*(b.mau - a.mau)/a.mau ,2) AS percent_change

26 FROM

27 mau a

28 JOIN

29 mau b ON a.month_timestamp = b.month_timestamp

30 - interval '1 month '

2.5.12 Retained Users Per Month

1 SELECT

2 DATE_TRUNC('month ', a.date) month_timestamp ,

3 COUNT(DISTINCT a.user_id) retained_users

4 FROM

5 logins a

6 JOIN

7 logins b ON a.user_id = b.user_id

8 AND DATE_TRUNC('month ', a.date) =

9 DATE_TRUNC('month ', b.date) + interval '1 month '
10 GROUP BY

11 date_trunc('month ', a.date)

14

2.6 Joining Tables

2.6.1 Nested Queries

We can combine multiple queries using a technique called “nesting”. The parentheses are
important for demarcating the boundary between the inner query and the outer one:

1 SELECT first_name , last_name

2 FROM executions

3 WHERE LENGTH(last_statement) =

4 (SELECT MAX(LENGTH(last_statement))

5 FROM executions)

2.6.2 MapReduce

An interesting addendum is that we’ve actually just learned to do MapReduce in SQL, i.e. how
to map various operations out to all the rows. For example, SELECT LENGTH(last statement)
FROM executions maps the length function out to all the rows.

2.6.3 Union

The UNION operator is used to combine the result-set of two or more SELECT statements.
Each SELECT statement within UNION must have the same number of columns. The columns
must also have similar data types. The columns in each SELECT statement must also be in
the same order. The UNION operator selects only distinct values by default.

To allow duplicate values, use UNION ALL.

1 SELECT column_name(s) FROM table_name1

2 UNION

3 SELECT column_name(s) FROM table_name2

4

5 SELECT column_name(s) FROM table_name1

6 UNION ALL

7 SELECT column_name(s) FROM table_name2

2.6.4 Joins

If we wish to combine data from multiple queries but our desired table has the same length as
the original executions table, we can rule out aggregations which produce a smaller table.

JOIN creates a big combined table which is then fed into the FROM block just like any other
table. The big idea behind JOINs is to create an augmented table because the original doesn’t
contain the information we need.

15

This is a powerful concept because it frees us from the limitations of a single table and allows
us to combine multiple tables in potentially complex ways. We’ve also seen that with this extra
complexity, meticulous bookkeeping becomes important. Aliasing tables, renaming columns
and defining good JOIN ON clauses are all techniques that help us maintain order.

1 SELECT

2 last_ex_date AS start ,

3 ex_date AS end ,

4 ex_date - last_ex_date AS day_difference

5 FROM executions

6 JOIN previous

7 ON executions.ex_number = previous.ex_number

8 ORDER BY day_difference DESC

9 LIMIT 10

1 SELECT

2 last_ex_date AS start ,

3 ex_date AS end ,

4 JULIANDAY(ex_date) - JULIANDAY(last_ex_date)

5 AS day_difference

6 FROM executions

7 JOIN previous

8 ON executions.ex_number = previous.ex_number

9 ORDER BY day_difference DESC

10 LIMIT 5

The query above is also notable because the clause executions.ex number = previous.ex number
uses the format <table>.<column> to specify columns. This is only necessary here because
both tables have a column called ex number.

The JOIN block takes the form of <table1> JOIN <table2> ON <clause>. The clause works
the same way as in WHERE <clause>. That is, it is a statement that evaluates to true or false,
and anytime a row from the first table and another from the second line up with the clause
being true, the two are matched.

The JOIN command defaults to performing what is called an “inner join” in which unmatched
rows are dropped.

To preserve all the rows of the left table, we use a LEFT JOIN in in place of the vanilla JOIN.
The empty parts of the row are left alone, which means they evaluate to NULL.

The RIGHT JOIN can be used to preserve unmatched rows in the right table, and the OUTER
JOIN can be used to preserve unmatched rows in both.

The final subtlety is handling multiple matches. The join creates enough rows of executions
so that each matching row of duplicated previous gets its own partner. In this way, joins can
create tables that are larger than the their constituents.

16

2.6.5 Self Joins

Remember to use aliases to form the column names (ex number, last ex date). Notice that we
are using a table alias here, naming the result of the nested query “previous”.

1 SELECT

2 last_ex_date AS start ,

3 ex_date AS end ,

4 JULIANDAY(ex_date) - JULIANDAY(last_ex_date) AS day_difference

5 FROM executions

6 JOIN (

7 SELECT

8 ex_number + 1 AS ex_number ,

9 ex_date AS last_ex_date

10 FROM executions

11) previous

12 ON executions.ex_number = previous.ex_number

13 ORDER BY day_difference DESC

14 LIMIT 10

“previous” is derived from executions, so we’re effectively joining executions to itself. This is
called a “self join” and is a powerful technique for allowing rows to get information from other
parts of the same table.

We’ve created the previous table to clarify the purpose that it serves. But we can actually
write the query more elegantly by joining the executions table directly to itself. Note that we
still need to give one copy an alias to ensure that we can refer to it unambiguously.

1 SELECT

2 previous.ex_date AS start ,

3 executions.ex_date AS end ,

4 JULIANDAY(executions.ex_date) - JULIANDAY(previous.ex_date)

5 AS day_difference

6 FROM executions

7 JOIN executions previous

8 ON executions.ex_number = previous.ex_number + 1

9 ORDER BY day_difference DESC

10 LIMIT 10

2.6.6 Multiple Join Conditions

Write a query to get the response time per email (id) sent to zach@g.com. Do not include ids
that did not receive a response from zach@g.com. Assume each email thread has a unique sub-
ject. Keep in mind a thread may have multiple responses back-and-forth between zach@g.com
and another email address.

17

1 /*

2 | id | subject | from | to | timestamp |

3 |----|----------|--------------|--------------|----------------|

4 | 1 | Yosemite | zach@g.com | thomas@g.com | 01-02 12:45:03 |

5 | 2 | Yosemite | thomas@g.com | zach@g.com | 01-02 16:35:04 |

6 | .. | .. | .. | .. | .. |

7 */

8 SELECT

9 a.id,

10 MIN(b.timestamp) - a.timestamp as time_to_respond

11 FROM

12 emails a

13 JOIN

14 emails b

15 ON

16 b.subject = a.subject

17 AND

18 a.to = b.from

19 AND

20 a.from = b.to

21 AND

22 a.timestamp < b.timestamp

23 WHERE

24 a.to = 'zach@g.com'
25 GROUP BY

26 a.id

2.6.7 Cross-Joins

The CROSS JOIN is used to combine each row of the first table with each row of the second
table. It is also known as the Cartesian join since it returns the Cartesian product of the sets
of rows from the joined tables.

Say we have a table state streams where each row is a state and the total number of hours of
streaming from a video hosting service. We want to write a query to get the pairs of states
with total streaming amounts within 1000 of each other.

1 SELECT

2 a.state as state_a ,

3 b.state as state_b

4 FROM

5 state_streams a

6 CROSS JOIN

7 state_streams b

8 WHERE

9 ABS(a.total_streams - b.total_streams) < 1000

10 AND

11 a.state <> b.state

18

2.7 Window Function

A window function performs a calculation across a set of table rows that are somehow related
to the current row. This is comparable to the type of calculation that can be done with an
aggregate function. But unlike regular aggregate functions, use of a window function does
not cause rows to become grouped into a single output row — the rows retain their separate
identities.

2.7.1 Get the ID with the highest value

Write a query to get the empno with the highest salary. Make sure your solution can handle
ties!

1 /*

2 depname | empno | salary |

3 -----------+-------+--------+

4 develop | 11 | 5200 |

5 ...

6 */

7 WITH max_salary AS (

8 SELECT

9 MAX(salary) max_salary

10 FROM

11 salaries

12)

13 SELECT

14 s.empno

15 FROM

16 salaries s

17 JOIN

18 max_salary ms ON s.salary = ms.max_salary

2.8 Materialized Views

In a materialized view, data is being persisted into a virtual table which is maintained by the
SQL Server. Views can be used to encapsulate and index commonly used queries or precompute
aggregations in order to improve read performance.

The database engine recreates the data, using the view’s SQL statement, every time a user
queries a view. Though this can negatively impact write performance because with each oper-
ation, the engine will have to update all of the relevant views.

1 CREATE VIEW view_name AS

2 SELECT column1 , column2 , ...

3 FROM table_name

4 WHERE condition;

19

3 Writing Data

3.1 Databases

3.1.1 Create database

1 CREATE DATABASE database_name

3.1.2 Delete database

1 DROP DATABASE database_name

3.2 Tables

3.2.1 Data types

Some common data types for columns of a table:

• CHAR(size)

• VARCHAR(size)

• BINARY(size)

• TEXT(size)

• BLOB(size)

• ENUM(val1, val2, val3, ...)

• SET(val1, val2, val3, ...)

• BIT(size)

• BOOL or BOOLEAN

• INT(size) or INTEGER(size)

• FLOAT(size, d)

• DATE

• DATETIME(fsp)

• TIMESTAMP(fsp)

• YEAR

3.2.2 Constraints

SQL constraints are used to specify rules for data in a table and can be specified either when
the table is created with the CREATE TABLE statement, or after the table is created with
the ALTER TABLE statement.

• NOT NULL – Ensures that a column cannot have a NULL value

• UNIQUE – Ensures that all values in a column are different

• PRIMARY KEY – A combination of a NOT NULL and UNIQUE. Uniquely identifies
each row in a table

• FOREIGN KEY – Uniquely identifies a row/record in another table

• CHECK – Ensures that all values in a column satisfies a specific condition

• DEFAULT – Sets a default value for a column when no value is specified

20

• INDEX – Used to create and retrieve data from the database very quickly

3.2.3 Creating tables

Each column in a database table is required to have a name and a data type.

1 CREATE TABLE pet (name VARCHAR (20), owner VARCHAR (20),

2 species VARCHAR (20), sex CHAR(1), birth DATE , death DATE)

3.2.4 Alter table

1 ALTER TABLE table_name

2 ADD column_name datatype

3

4 /* or */

5

6 ALTER TABLE table_name

7 DROP COLUMN column_name

3.2.5 Deleting tables

1 DELETE FROM table_name

2 WHERE some_column=some_value

3

4 /* Delete full table */

5 DELETE FROM table_name

6 DELETE * FROM table_name

1 CREATE TABLE table_name (

2 column1 datatype constraint ,

3 column2 datatype constraint ,

4 column3 datatype constraint ,

5

6);

3.3 Indexes

Indexes are used to retrieve data from the database more quickly than otherwise. The users
cannot see the indexes, they are just used to speed up searches/queries

Updating a table with indexes takes more time than updating a table without (because the
indexes also need an update). So, only create indexes on columns that will be frequently
searched against.

21

Some recommendations involving indexes are:

• disable constraints and indexes during bulk loads.

• avoid indexes on columns with low selectivity.

• use partial indexes.

• index columns with high correlation using BRIN (Block Range Index)

3.3.1 B-Trees

A B-tree is a self-balancing tree data structure that maintains sorted data and allows searches,
sequential access, insertions, and deletions in logarithmic time. B-trees and B+trees are com-
monly used to create indexes in relational databases.

See Data Structures and Algorithms Notebook 2 for more details.

3.3.2 Create index

By default, duplicate values are allowed. Use UNIQUE keyword if duplicate values are not
allowed.

1 CREATE INDEX index_name

2 ON table_name (column1 , column2 , ...);

3

4 CREATE UNIQUE INDEX index_name

5 ON table_name (column1 , column2 , ...);

3.3.3 Delete index

1 /* SQL Server */

2 DROP INDEX table_name.index_name;

3

4 /* MySQL */

5 ALTER TABLE table_name

6 DROP INDEX index_name;

3.4 Records

3.4.1 Insert Records

It is possible to write the INSERT INTO statement in two ways.

2https://github.com/lukepereira/notebooks

22

The first way specifies both the column names and the values to be inserted. If you are adding
values for all the columns of the table, you do not need to specify the column names in the
SQL query.

1 INSERT INTO table_name (column1 , column2 , column3 , ...)

2 VALUES (value1 , value2 , value3 , ...);

3

4 INSERT INTO table_name

5 VALUES (value1 , value2 , value3 , ...);

The next time you load data into a table, think about how the data is going to be queried, and
make sure you sort it in a way that indexes used for range scan can benefit from.

3.4.2 Update Records

UPDATE is a relatively expensive operation. To speed up an UPDATE command it’s best to
make sure you only update what needs updating.

1 /* Likely slower */

2 UPDATE users SET email = lower(email);

3

4 /* Likely faster */

5 UPDATE users SET email = lower(email)

6 WHERE email != lower(email);

3.4.3 Delete Records

1 DELETE FROM table_name WHERE condition;

3.4.4 Copy with select and insert

Copy all columns into an existing table.

1 INSERT INTO table2

2 SELECT * FROM table1

3 WHERE condition;

The SELECT INTO statement copies data from one table into a new table.

1 SELECT *

2 INTO newtable [IN externaldb]

3 FROM oldtable

4 WHERE condition;

23

4 Transactions

Transactional control commands are only used with the DML Commands such as INSERT,
UPDATE and DELETE. They cannot be used while creating tables or dropping them because
these operations are automatically committed in the database.

• COMMIT – to save the changes.

• ROLLBACK – to roll back the changes.

• SAVEPOINT – creates points within the groups of transactions in which to ROLLBACK.

• SET TRANSACTION – Places a name on a transaction.

4.1 COMMIT

The COMMIT command is the transactional command used to save changes invoked by a
transaction to the database.

1 DELETE FROM CUSTOMERS

2 WHERE AGE = 25;

3 COMMIT;

4.2 ROLLBACK

The ROLLBACK command is the transactional command used to undo transactions that have
not already been saved to the database. This command can only be used to undo transactions
since the last COMMIT or ROLLBACK command was issued.

1 DELETE FROM CUSTOMERS

2 WHERE AGE = 25;

3 ROLLBACK;

4.3 SAVEPOINT

A SAVEPOINT is a point in a transaction when you can roll the transaction back to a certain
point without rolling back the entire transaction.

1 SAVEPOINT SP1;

2 /* Savepoint created. */

3 DELETE FROM CUSTOMERS WHERE ID=1;

4 /* 1 row deleted. */

5 SAVEPOINT SP2;

6 /* Savepoint created. */

7 DELETE FROM CUSTOMERS WHERE ID=2;

8 /* 1 row deleted. */

24

9 ROLLBACK TO SP2;

The RELEASE SAVEPOINT command is used to remove a SAVEPOINT that you have cre-
ated.

1 RELEASE SAVEPOINT SAVEPOINT_NAME;

4.4 SET TRANSACTION

The SET TRANSACTION command can be used to initiate a database transaction. This
command is used to specify characteristics for the transaction that follows. For example, you
can specify a transaction to be read only or read write.

1 SET TRANSACTION [READ WRITE | READ ONLY];

References

[1] https://selectstarsql.com/

[2] https://www.w3schools.com/sql

[3] https://www.tutorialspoint.com/sql/sql-transactions.htm

[4] https://quip.com/2gwZArKuWk7W

[5] https://hakibenita.com/sql-tricks-application-dba

[6] https://use-the-index-luke.com/
http://docshare01.docshare.tips/files/29375/293750304.pdf

25

	Pre-requsite Concepts
	Types of SQL Commands
	ACID (SQL)
	Primary and Foreign Keys
	Normalized Data
	Derived Data, Joins, Materialized Views
	Index and Secondary Index
	Distributed Databases

	Reading Data
	SELECT Statement
	Select all
	Select specific columns
	De-duplicate rows
	Aliasing

	WHERE, Conditions and Comparators
	Numeric comparison
	String comparison
	AND and OR
	In a given list of values
	Inclusive ranges
	Exists, Any, All

	String Pattern Matching
	Quotes
	LIKE string operators

	Operations on Retrieved Records
	Sort rows
	Limit the number of rows
	Filter rows

	Aggregate Functions
	The COUNT Function
	NULLS
	Subsets
	Cumulative Sum
	CASE WHEN
	The GROUP BY Block
	The HAVING Block
	Averages
	Rolling Average
	Percentage
	MoM Percent Change
	Retained Users Per Month

	Joining Tables
	Nested Queries
	MapReduce
	Union
	Joins
	Self Joins
	Multiple Join Conditions
	Cross-Joins

	Window Function
	Get the ID with the highest value

	Materialized Views

	Writing Data
	Databases
	Create database
	Delete database

	Tables
	Data types
	Constraints
	Creating tables
	Alter table
	Deleting tables

	Indexes
	B-Trees
	Create index
	Delete index

	Records
	Insert Records
	Update Records
	Delete Records
	Copy with select and insert

	Transactions
	COMMIT
	ROLLBACK
	SAVEPOINT
	SET TRANSACTION

