
Probability Review
Identities

P (A ∩B) = P (A)P (B)

P (A|B) =
P (A ∩B)

P (B)
P (A) = P (A|B)P (B) + P (A|B̄)P (B̄)

f(x) =
dF (x)

dx
,

∫ ∞
−∞

f(x) = 1 P (a < X < b) =

∫ b

a
f(x)dx

F (y) =

∫ y

−∞
f(x)dx P (X < x) = F (X)

E[Xn] =

∫ ∞
−∞

xnf(x)dx V ar(X) = E[X2]− E[X]2

Uniform Distribution: X ∼ uniform(a, b)

f(x) =

{
1
b−a , if a < x < b

0, otherwise
(pdf)

F (x) =


0, if x < a
x−a
b−a , if a ≤ x ≤ b
1, if x > b

(cdf)

E[X] =
a+ b

2
V ar[X] =

(b− a)2
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Exponential Distribution: X ∼ exp(λ)

f(x) = λe−λx (pdf)

F (x) = 1− λe−λx (cdf)

E[X] =
1

λ
V ar[X] =

1

λ2

P (X > s+ t|X > s) = P (X > t) [Memoryless]

Poisson Distribution: X ∼ pois(λ)

P (N(t) = n) =
(λt)t

n!
e−λt [pmf]

E[X] = V ar(X)

Poisson Process

N(0) = 0

f(x) = λe−λx [Arrival See Time Average]

P (X > s+ t|X > s) = P (X > t) [Memoryless]

λ =
n∑
i=1

λi, Y =

(
n∑
i=1

Xi

)
∼ pois(λ) [Merge Poisson Processes]

X ∼ pois(λ), X = [X1, X2]

=⇒ X1,2 ∼ pois(
λ

2
) [Split Poisson Processes]

Performance Analysis

Identities

Ai(t) [Number of arrivals] λi(t) =
Ai(t)

t
[Arrival Rate]

Ci(t) [Completions] Xi(t) =
Ci(t)

t
[Throughput]

Bi(t) [Busy time] ρi(t) =
Bi(t)

t
[Utilization]

Si(t) =
Bi(t)

Ci(t)
[Avg process time] Si(t) = E[S]

Di [Processing time of cycle] E[Di] = E[Si]E[V i]

Vi(t) [Visits to device] Vuser = V0 = 1

lim
t→∞

Ai(t)

t
= lim
t→∞

Ci(t)

t
λi = Xi [Steady state]

N(t) = A(t)− C(t) [Number of jobs in system]

R(t) ≈
∫ t

0

A(s)− C(s)

A(t)
ds [Avg response time]

N̄(t) ≈
∫ t

0

A(s)− C(s)

t
ds [Avg number of jobs in system]

N̄(t) =
R(t)A(t)

t

Z [Think time]

E[N ] = N,λ = X,R = R+ Z [Closed System]

Operation Laws

E[N ] = λE[R] [Little’s Law]

ρi = E[Si]Xi =
λi

ρi
[Utilization Law]

ρi = E[Si]E[V i]X = E[Di]X [Bottleneck Law]

Xi = E[Vi]X [Forced Flow Law]

E[R] =
N

X
− E[Z] [Closed System Response Time Law]

Bottleneck Analysis

Dmax [Bottleneck Device] D =
∑

Di

E[R] ≥ D X =
ρmax

Dmax

E[R] ≥ max(D,NDmax − E[Z]) X ≤ min(
1

Dmax
,

N

D + E[Z]
)

N∗ =
D + E[Z]

Dmax
=⇒ optimal X and E[R]

Queuing Models
(Arrivals / Service Times / Number of servers / Room in queue)

M/M/1

ρ = λ/µ µ > λ [Stability condition]

π0 = 1−
λ

µ
= 1− ρ πi = π0(

λ

µ
)i = (1− ρ)ρi

E[N ] =
λ

µ− λ
=

ρ

1− ρ
E[NQ] = E[N ]− ρ

E[R] =
1

µ− λ
E[RQ] =

1

µ− λ
−

1

µ

M/M/c

ρ =
λ

cµ
cµ > λ [Stability condition]

π0 = (
λ

µ
)c

1

1− ρ
πi =


λi

i!µi
π0, if i < c

λi

c!µici−c
π0, if i ≥ c

E[N ] = λE[R] E[NQ] = λE[RQ]

E[R] = E[RQ] + E[S] = E[RQ] +
1

µ

E[RQ] =
(λ
µ

)cµ

(c− 1)!(cµ− λ)2

P (job is queued) =

∞∑
i=0

π =
1

c!
(
λ

µ
)c

1

1− ρ
π0 [Erlang C Formula]

M/M/∞

ρ = λ/µ µ > λ [Always Stable]

π0 = e
−λ
µ = e−ρ πi =

(λ/µ)i

i!
e
−λ
µ =

ρi

i!
e−ρ

E[N ] =
λ

µ
= ρ E[NQ] = 0

E[R] =
1

µ
= E[S] E[RQ] = 0



Birth-Death Process
CTMC where state transitions increase or decrease by a constant
factor.

π0 =
1

1 +
∑∞
k=1

∏k
i=1

λi−1

µi

πi =

∏i−1
j=0 λj∏i
j=1 µj

π0

Threshold System
T > 0, Arrival rate s, processing rate s. If r > s,N → 0. If
s > r,N →∞.

π0 =
1

1− r
s

(
s

r
)T − 1

πi =

{
( s
r

)iπ0, if i < T

( s
r

)i−T ( r
s

)2π0, if i ≥ T

Jackson Networks
1. External arrivals form a Poisson process

2. All service times are exponentially distributed and the service
discipline at all queues is first-come, first-served

3. internal routing of jobs between servers is probabilistic

4. The utilization of all of the queues is less than one

Solved via markov model

1. Markov Chain: We may solve the corresponding Discrete
Time Markov Chain to find its steady state distribution,
E[N ], and E[R]. If there are N jobs and k nodes, we will have

a lower bound of Ω(
(N+k−1

k−1

)2
) when solving the system of

equations.

2. Product form: Using a temporary value for each node’s
arrival rate, λ̄, determine the ratios between the balance
equations and then recover the real values using the actual
arrival rate, λ, finding the steady-state distribution, E[N ],
and E[R]. Still suffers from a combinatorial explosion in

complexity with a lower bound of Ω(
(N+k−1

k−1

)
).

3. Mean Value Analysis: Uses the Arrival Theorem in a
recursive algorithm to analyse specific nodes when there are
N jobs in the system. We only have access to expectations
and utilization of specific nodes, i.e. E[Ri], E[Ni], ρi but is
more performant with an upper bound of O(Nk).

M/G/1
• Markovian (modulated by a Poisson process), service times

have a General distribution and there is a single server

• E[S] = 1
µ

• high variance in service distribution =⇒ high response time

• Has equal E[N ] for all blind non-pre-emptive service policies

Pollaczek–Khinchine formula

E[N ] = ρ+
ρ2 + λ2σ2

s

2(1− ρ)

Service Policies
Blind and non-blind policy relates to knowledge of job size on arrival.
If service times that jobs require are known, then the optimal
scheduling policy is shortest remaining processing time (SRPT).

• first-come, first-served (FCFS)

• processor sharing (PS) where all jobs in the queue share the
service capacity between them equally

• last-come, first served (LCFS) with/without preemption
where a job in service may or may not be interrupted with
work being conserved

• generalized foreground-background (FB) scheduling also
known as least-attained-service where the jobs which have
received least processing time so far are served first and jobs
which have received equal service time share service capacity
using processor sharing

• shortest job first (SJF) with/without preemption, where the
job with the smallest size receives service

• shortest remaining processing time (SRPT) where the next
job to serve is that with the smallest remaining processing
requirement

Failure/Hazard Rate
• Increasing Failure Rate (IFR): h(t) is non-decreasing in t, the

expected remaining work is decreasing, non pre-emptive is
preferable.

• Decreasing Failure Rate (DFR): h(t) is non-increasing in t,
the expected remaining work is increasing, pre-emptive policy
is preferable.

h(t) =
f(t)

1− F (t)
E[Remaining time] =

1

h(t)

X ∼ uniform(a, b) (IFR) =⇒ h(t) =
1

b− t

X ∼ exp(λ) (IFR and DFR) =⇒ h(t) =
λe−λt

1− (1− e−λt)

Time average Excess = E[Sc] =
E[Sc]

2E[S]

E[RQ] =
ρ

1− ρ
E[Sc]

Pareto Distribution
• popular DFR, ”80-20 rule”, pre-emptive policy is preferable

• 50% of the load on the system comes from 1% of the jobs

• α shape parameter, α = 1, X > t =⇒ P (X > 2t) = 1
2

• 0 < alpha < 1, V ar(X) =∞, E[X] =∞

• Survival Function:

F (x) = Pr(X > x) =

{(xm
x

)α
x ≥ xm,

1 x < xm,

Misc
•
∑∞
i=0 α

i = 1
1−α , |α| < 1.

• h = f
g

=⇒ h′ = f ′g−fg′
g2

• Max system utilization =⇒ only bottleneck utilization is
100%

• Want to minimize E[R] and maximize X.

• Operation Laws work regardless of distributions of random
variables

• exponential distributions are a very good assumption for
modeling arrivals, but only moderately good for modelling
processing times
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