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Performance Analysis
Identities

A;(t) [Number of arrivals]
C;(t) [Completions]

B;(t) [Busy time]
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Operation Laws

Ai
pi = E[Si]X; = —

Pi
pi = E[Si|E[Vi]X = E[D;]X
X; = E[Vi]X

E[R] = % —E[Z]

Bottleneck Analysis
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[Little’s Law]
[Utilization Law]

[Bottleneck Law]

[Forced Flow Law]

[Closed System Response Time Law]
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Queuing Models

(Arrivals / Service Times / Number of servers / Room in queue)
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Birth-Death Process

CTMC where state transitions increase or decrease by a constant
factor.
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Threshold System
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Jackson Networks
1. External arrivals form a Poisson process

2. All service times are exponentially distributed and the service

discipline at all queues is first-come, first-served
3. internal routing of jobs between servers is probabilistic
4. The utilization of all of the queues is less than one
Solved via markov model

1. Markov Chain: We may solve the corresponding Discrete
Time Markov Chain to find its steady state distribution,

E[N], and E[R]. If there are N jobs and k nodes, we will have

_1\2 .
a lower bound of Q((N;:fl 1) ) when solving the system of
equations.

2. Product form: Using a temporary value for each node’s
arrival rate, \, determine the ratios between the balance
equations and then recover the real values using the actual
arrival rate, A, finding the steady-state distribution, E[N],

and E[R]. Still suffers from a combinatorial explosion in

complexity with a lower bound of Q((Nljffl ).

3. Mean Value Analysis: Uses the Arrival Theorem in a
recursive algorithm to analyse specific nodes when there are
N jobs in the system. We only have access to expectations
and utilization of specific nodes, i.e. E[R;], E[N;], p; but is
more performant with an upper bound of O(Nk).

M/G/1
e Markovian (modulated by a Poisson process), service times
have a General distribution and there is a single server

e E[S] :%

e high variance in service distribution = high response time

e Has equal E[N] for all blind non-pre-emptive service policies

Pollaczek—Khinchine formula
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Service Policies

Blind and non-blind policy relates to knowledge of job size on arrival.
If service times that jobs require are known, then the optimal
scheduling policy is shortest remaining processing time (SRPT).

o first-come, first-served (FCFS)

e processor sharing (PS) where all jobs in the queue share the
service capacity between them equally

e last-come, first served (LCFS) with/without preemption
where a job in service may or may not be interrupted with
work being conserved

e generalized foreground-background (FB) scheduling also
known as least-attained-service where the jobs which have
received least processing time so far are served first and jobs
which have received equal service time share service capacity
using processor sharing

e shortest job first (SJF) with/without preemption, where the
job with the smallest size receives service

e shortest remaining processing time (SRPT) where the next
job to serve is that with the smallest remaining processing
requirement

Failure/Hazard Rate

e Increasing Failure Rate (IFR): h(t) is non-decreasing in t, the
expected remaining work is decreasing, non pre-emptive is
preferable.

e Decreasing Failure Rate (DFR): h(t) is non-increasing in t,
the expected remaining work is increasing, pre-emptive policy
is preferable.

h(t) = IO E[Remaining time] = L
L—F(t) h(t)
1
X ~uniform(a,b) (IFR) = h(t) = p—
e At
X ~ exp(A\) (IFR and DFR) — h(t) = m
E
Time average Excess = E[S.] = [Sc]
2E[9]

E[Rq] = fppmsc]

Pareto Distribution
e popular DFR, ”80-20 rule”, pre-emptive policy is preferable

e 50% of the load on the system comes from 1% of the jobs
e « shape parameter, a =1, X >t = P(X > 2¢t) = %
e 0 < alpha <1, Var(X) = oo, E[X] = o0

e Survival Function:

F(z) =Pr(X >2) = {§ @

Misc

Y ,al = Lol < 1.

1—-a’
he{ — p = f'a=1d
7 g2
Max system utilization == only bottleneck utilization is
100%
Want to minimize E[R] and maximize X.

Operation Laws work regardless of distributions of random
variables

exponential distributions are a very good assumption for
modeling arrivals, but only moderately good for modelling
processing times
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