Probability Review

Identities
$P(A \cap B)=P(A) P(B)$
$P(A \mid B)=\frac{P(A \cap B)}{P(B)}$

$$
P(A)=P(A \mid B) P(B)+P(A \mid \bar{B}) P(\bar{B})
$$

$f(x)=\frac{d F(x)}{d x}, \int_{-\infty}^{\infty} f(x)=1$
$F(y)=\int_{-\infty}^{y} f(x) d x$
$\mathbb{E}\left[X^{n}\right]=\int_{-\infty}^{\infty} x^{n} f(x) d x$

$$
P(a<X<b)=\int_{a}^{b} f(x) d x
$$

x

Uniform Distribution: $X \sim \operatorname{uniform}(a, b)$
$f(x)= \begin{cases}\frac{1}{b-a}, & \text { if } a<x<b \\ 0, & \text { otherwise }\end{cases}$
$F(x)= \begin{cases}0, & \text { if } x<a \\ \frac{x-a}{b-a}, & \text { if } a \leq x \leq b \\ 1, & \text { if } x>b\end{cases}$
(pdf) $\lim _{t \rightarrow \infty} \frac{A_{i}(t)}{t}=\lim _{t \rightarrow \infty} \frac{C_{i}(t)}{t}$
$N(t)=A(t)-C(t)$
(cdf)
$\mathbb{E}[X]=\frac{a+b}{2}$

Exponential Distribution: $X \sim \exp (\lambda)$

$f(x)=\lambda e^{-\lambda x}$
$R(t) \approx \int_{0}^{t} \frac{A(s)-C(s)}{A(t)} d s$
$\bar{N}(t) \approx \int_{0}^{t} \frac{A(s)-C(s)}{t} d s$ $\bar{N}(t)=\frac{R(t) A(t)}{t}$

Z
$F(x)=1-\lambda e^{-\lambda x}$
$\mathbb{E}[X]=\frac{1}{\lambda}$
$P(X>s+t \mid X>s)=P(X>t)$

Poisson Distribution: $X \sim \operatorname{pois}(\lambda)$
$P(N(t)=n)=\frac{(\lambda t)^{t}}{n!} e^{-\lambda t}$
$\mathbb{E}[X]=\operatorname{Var}(X)$

Poisson Process

$N(0)=0$
$f(x)=\lambda e^{-\lambda x}$
$P(X>s+t \mid X>s)=P(X>t)$
$\lambda=\sum_{i=1}^{n} \lambda_{i}, Y=\left(\sum_{i=1}^{n} X_{i}\right) \sim \operatorname{pois}(\lambda)$
$X \sim \operatorname{pois}(\lambda), X=\left[X_{1}, X_{2}\right]$
$\Longrightarrow X_{1,2} \sim \operatorname{pois}\left(\frac{\lambda}{2}\right)$
[Arrival See Time Average]
[Memoryless]
[Merge Poisson Processes]
$\mathbb{E}[N]=N, \lambda=X, R=R+Z$

Operation Laws

$\mathbb{E}[N]=\lambda \mathbb{E}[R]$
$\rho_{i}=\mathbb{E}\left[S_{i}\right] X_{i}=\frac{\lambda_{i}}{\rho_{i}}$
$\rho_{i}=\mathbb{E}\left[S_{i}\right] \mathbb{E}[V i] X=\mathbb{E}\left[D_{i}\right] X$
[mf]
$X_{i}=\mathbb{E}\left[V_{i}\right] X$
$\mathbb{E}[R]=\frac{N}{X}-\mathbb{E}[Z]$

Bottleneck Analysis

$D_{\max }$ [Bottleneck Device]

$$
\mathbb{E}[R] \geq D
$$

$\mathbb{E}[R] \geq \max \left(D, N D_{\max }-\mathbb{E}[Z]\right)$
$N^{*}=\frac{D+\mathbb{E}[Z]}{D_{\max }}$

$$
\lambda_{i}(t)=\frac{A_{i}(t)}{t} \text { [Arrival Rate] }
$$

$$
X_{i}(t)=\frac{C_{i}(t)}{t}[\text { Throughput }]
$$

$$
\rho_{i}(t)=\frac{B_{i}(t)}{t}[\text { Utilization }]
$$

$$
S_{i}(t)=\mathbb{E}[S]
$$

$$
\mathbb{E}\left[D_{i}\right]=\mathbb{E}\left[S_{i}\right] \mathbb{E}[V i]
$$

$$
V_{u s e r}=V_{0}=1
$$

$$
\lambda_{i}=X_{i}[\text { Steady state }]
$$

[Number of jobs in system]
[Avg response time]
[Avg number of jobs in system
[Think time]
[Closed System]
[Little's Law]
[Utilization Law]
[Bottleneck Law]
[Forced Flow Law]
[Closed System Response Time Law]

$$
\begin{array}{r}
D=\sum_{i} D_{i} \\
X=\frac{\rho_{\max }}{D_{\max }} \\
X \leq \min \left(\frac{1}{D_{\max }}, \frac{N}{D+\mathbb{E}[Z]}\right) \\
\Longrightarrow \text { optimal } X \text { and } \mathbb{E}[R]
\end{array}
$$

Queuing Models

(Arrivals / Service Times / Number of servers / Room in queue)

$\mathrm{M} / \mathrm{M} / \mathbf{1}$

$\rho=\lambda / \mu \quad \mu>\lambda$ [Stability condition]
$\pi_{0}=1-\frac{\lambda}{\mu}=1-\rho$

$$
\pi_{i}=\pi_{0}\left(\frac{\lambda}{\mu}\right)^{i}=(1-\rho) \rho^{i}
$$

$\mathbb{E}[N]=\frac{\lambda}{\mu-\lambda}=\frac{\rho}{1-\rho}$
$\mathbb{E}\left[N_{Q}\right]=\mathbb{E}[N]-\rho$
$\mathbb{E}[R]=\frac{1}{\mu-\lambda}$
$\mathbb{E}\left[R_{Q}\right]=\frac{1}{\mu-\lambda}-\frac{1}{\mu}$

$$
\text { (0) (2) (2) } e_{\mu}^{\lambda} \cdots e_{\mu}^{\lambda} e_{\mu}^{\lambda} e_{\mu}^{\lambda}
$$

$\mathbf{M} / \mathbf{M} / \mathbf{c}$

$\rho=\frac{\lambda}{c \mu}$
$c \mu>\lambda$ [Stability condition]
$\pi_{0}=\left(\frac{\lambda}{\mu}\right)^{c} \frac{1}{1-\rho}$
$\mathbb{E}[N]=\lambda \mathbb{E}[R]$

$$
\pi_{i}= \begin{cases}\frac{\lambda^{i}}{i!\mu^{i}} \pi_{0}, & \text { if } i<c \\ \frac{\lambda^{i}}{c!\mu^{i} c^{i-c}} \pi_{0}, & \text { if } i \geq c\end{cases}
$$

$$
\mathbb{E}\left[N_{Q}\right]=\lambda \mathbb{E}\left[R_{Q}\right]
$$

$\mathbb{E}[R]=\mathbb{E}\left[R_{Q}\right]+\mathbb{E}[S]=\mathbb{E}\left[R_{Q}\right]+\frac{1}{\mu}$
$\mathbb{E}\left[R_{Q}\right]=\frac{\left(\frac{\lambda}{\mu}\right)^{c} \mu}{(c-1)!(c \mu-\lambda)^{2}}$
$P($ job is queued $)=\sum_{i=0}^{\infty} \pi=\frac{1}{c!}\left(\frac{\lambda}{\mu}\right)^{c} \frac{1}{1-\rho} \pi_{0} \quad$ [Erlang C Formula]

$$
(0)_{\mu}^{\lambda}(1)_{2 \mu}^{\lambda}(3)_{4 \mu}^{\lambda} \cdots \underbrace{\lambda}_{(c-1) \mu} e_{c \mu}^{i}
$$

$\mathbf{M} / \mathbf{M} / \infty$
$\rho=\lambda / \mu$
$\mu>\lambda$ [Always Stable]
$\pi_{0}=e^{-\frac{\lambda}{\mu}}=e^{-\rho}$
$\pi_{i}=\frac{(\lambda / \mu)^{i}}{i!} e^{-\frac{\lambda}{\mu}}=\frac{\rho^{i}}{i!} e^{-\rho}$
$\mathbb{E}\left[N_{Q}\right]=0$
$\mathbb{E}\left[R_{Q}\right]=0$

Birth-Death Process

CTMC where state transitions increase or decrease by a constant factor.

$$
\begin{gathered}
\pi_{0}=\frac{1}{1+\sum_{k=1}^{\infty} \prod_{i=1}^{k} \frac{\lambda_{i-1}}{\mu_{i}}} \\
\pi_{i}=\frac{\prod_{j=0}^{i-1} \lambda_{j}}{\prod_{j=1}^{i} \mu_{j}} \pi_{0}
\end{gathered}
$$

Threshold System

$T>0$, Arrival rate s, processing rate s. If $r>s, N \rightarrow 0$. If
$s>r, N \rightarrow \infty$.

$$
\begin{gathered}
\pi_{0}=\frac{1}{1-\frac{r}{s}}\left(\frac{s}{r}\right)^{T}-1 \\
\pi_{i}= \begin{cases}\left(\frac{s}{r}\right)^{i} \pi_{0}, & \text { if } i<T \\
\left(\frac{s}{r}\right)^{i-T}\left(\frac{r}{s}\right)^{2} \pi_{0}, & \text { if } i \geq T\end{cases}
\end{gathered}
$$

Jackson Networks

1. External arrivals form a Poisson process
2. All service times are exponentially distributed and the service discipline at all queues is first-come, first-served
3. internal routing of jobs between servers is probabilistic
4. The utilization of all of the queues is less than one

Solved via markov mode

1. Markov Chain: We may solve the corresponding Discrete Time Markov Chain to find its steady state distribution, $\mathbb{E}[N]$, and $\mathbb{E}[R]$. If there are N jobs and k nodes, we will have a lower bound of $\Omega\left(\binom{N+k-1}{k-1}^{2}\right)$ when solving the system of equations.
2. Product form: Using a temporary value for each node's arrival rate, $\bar{\lambda}$, determine the ratios between the balance equations and then recover the real values using the actual arrival rate, λ, finding the steady-state distribution, $\mathbb{E}[N]$, and $\mathbb{E}[R]$. Still suffers from a combinatorial explosion in complexity with a lower bound of $\Omega\left(\binom{N+k-1}{k-1}\right)$.
3. Mean Value Analysis: Uses the Arrival Theorem in a recursive algorithm to analyse specific nodes when there are N jobs in the system. We only have access to expectations and utilization of specific nodes, i.e. $\mathbb{E}\left[R_{i}\right], \mathbb{E}\left[N_{i}\right], \rho_{i}$ but is more performant with an upper bound of $\mathcal{O}(N k)$.

$\mathrm{M} / \mathrm{G} / \mathbf{1}$

- Markovian (modulated by a Poisson process), service times have a General distribution and there is a single server
- $\mathbb{E}[S]=\frac{1}{\mu}$
- high variance in service distribution \Longrightarrow high response time
- Has equal $\mathbb{E}[N]$ for all blind non-pre-emptive service policies

Pollaczek-Khinchine formula

$$
\mathbb{E}[N]=\rho+\frac{\rho^{2}+\lambda^{2} \sigma_{s}^{2}}{2(1-\rho)}
$$

Service Policies

Blind and non-blind policy relates to knowledge of job size on arrival If service times that jobs require are known, then the optimal scheduling policy is shortest remaining processing time (SRPT)

- first-come, first-served (FCFS)
- processor sharing (PS) where all jobs in the queue share the service capacity between them equally
- last-come, first served (LCFS) with/without preemption where a job in service may or may not be interrupted with work being conserved
- generalized foreground-background (FB) scheduling also known as least-attained-service where the jobs which have received least processing time so far are served first and jobs which have received equal service time share service capacity using processor sharing
- shortest job first (SJF) with/without preemption, where the job with the smallest size receives service
- shortest remaining processing time (SRPT) where the next job to serve is that with the smallest remaining processing requirement

Failure/Hazard Rate

- Increasing Failure Rate (IFR): $h(t)$ is non-decreasing in t, the expected remaining work is decreasing, non pre-emptive is preferable.
- Decreasing Failure Rate (DFR): $\mathrm{h}(\mathrm{t})$ is non-increasing in t , the expected remaining work is increasing, pre-emptive policy is preferable.

$$
\begin{array}{lr}
h(t)=\frac{f(t)}{1-F(t)} & \mathbb{E}[\text { Remaining time }]=\frac{1}{h(t)} \\
X \sim \operatorname{uniform}(a, b)(\mathrm{IFR}) \Longrightarrow & h(t)=\frac{1}{b-t} \\
X \sim \exp (\lambda)(\text { IFR and DFR }) \Longrightarrow & h(t)=\frac{\lambda e^{-\lambda t}}{1-\left(1-e^{-\lambda t}\right)}
\end{array}
$$

$$
\text { Time average Excess }=\mathbb{E}\left[S_{c}\right]=\frac{\mathbb{E}\left[S_{c}\right]}{2 \mathbb{E}[S]}
$$

$$
\mathbb{E}\left[R_{Q}\right]=\frac{\rho}{1-\rho} \mathbb{E}\left[S_{c}\right]
$$

Pareto Distribution

- popular DFR, "80-20 rule", pre-emptive policy is preferable
- 50% of the load on the system comes from 1% of the jobs
- α shape parameter, $\alpha=1, X>t \Longrightarrow P(X>2 t)=\frac{1}{2}$
- $0<$ alpha $<1, \operatorname{Var}(X)=\infty, \mathbb{E}[X]=\infty$
- Survival Function:

$$
\bar{F}(x)=\operatorname{Pr}(X>x)= \begin{cases}\left(\frac{x_{\mathrm{m}}}{x}\right)^{\alpha} & x \geq x_{\mathrm{m}} \\ 1 & x<x_{\mathrm{m}}\end{cases}
$$

Misc

- $\sum_{i=0}^{\infty} \alpha^{i}=\frac{1}{1-\alpha},|\alpha|<1$.
- $h=\frac{f}{g} \Longrightarrow h^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$
- Max system utilization \Longrightarrow only bottleneck utilization is 100%
- Want to minimize $\mathbb{E}[R]$ and maximize X.
- Operation Laws work regardless of distributions of random variables
- exponential distributions are a very good assumption for modeling arrivals, but only moderately good for modelling processing times

