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1 Terminology and notation

1.1 Lie groups

A Lie group (pronounced ”Lee”) is a group that is also a differentiable manifold (See differential
geometry notebook). Combining these two ideas, one obtains a continuous group where points
can be multiplied together, and their inverse can be taken. If the multiplication and taking of
inverses are defined to be smooth (differentiable), one obtains a Lie group. Lie groups appear
as symmetry groups of physical systems, and their Lie algebras (tangent vectors near the
identity) may be thought of as infinitesimal symmetry motions. Thus Lie algebras and their
representations are used extensively in physics, notably in quantum mechanics and particle
physics.
Definition 1.1. A Lie group is a group G, equipped with a manifold structure such that the
group operations

Mult : G×G→ G, (g1, g2) 7→ g1g2

Inv : G→ G, g 7→ g−1

are smooth. A morphism of Lie groups G,G′ is a morphism of groups φ : G → G′ that is
smooth.
Remark 1.2. Using the implicit function theorem, one can show that smoothness of Inv is in
fact automatic.

The first example of a Lie group is the general linear group

GL(n,R) = {A ∈ Matn(R)| det(A) 6= 0}

of invertible n × n matrices. It is an open subset of Matn(R), hence a submanifold, and the
smoothness of group multiplication follows since the product map for Matn(R) is obviously
smooth.

Our next example is the orthogonal group

O(n) = {A ∈ Matn(R)| ATA = I}.

To see that it is a Lie group, it suffices to show that O(n) is an embedded submanifold of
Matn(R). In order to construct submanifold charts, we use the exponential map of matrices

exp: Matn(R)→ Matn(R), B 7→ exp(B) =

∞∑
n=0

1

n!
Bn

(an absolutely convergent series). One has d
dt
|t=0 exp(tB) = B, hence the differential of exp

at 0 is the identity idMatn(R). By the inverse function theorem, this means that there is ε > 0
such that exp restricts to a diffeomorphism from the open neighborhood U = {B : ||B|| < ε}
of 0 onto an open neighborhood exp(U) of I. Let

o(n) = {B ∈ Matn(R)| B +BT = 0}.

We claim that
exp(o(n) ∩ U) = O(n) ∩ exp(U),
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so that exp gives a submanifold chart for O(n) over exp(U). To prove the claim, let B ∈ U .
Then

exp(B) ∈ O(n)⇔ exp(B)T = exp(B)−1

⇔ exp(BT ) = exp(−B)

⇔ BT = −B
⇔ B ∈ o(n).

For a more general A ∈ O(n), we use that the map Matn(R) → Matn(R) given by left multi-
plication is a diffeomorphism. Hence, A exp(U) is an open neighborhood of A, and we have

A exp(U) ∩O(n) = A(exp(U) ∩O(n)) = A exp(U ∩ o(n)).

Thus, we also get a submanifold chart near A. This proves that O(n) is a submanifold. Hence
its group operations are induced from those of GL(n,R), they are smooth. Hence O(n) is a
Lie group. Notice that O(n) is compact (the column vectors of an orthogonal matrix are an
orthonormal basis of Rn; hence O(n) is a subset of Sn−1 × · · ·Sn−1 ⊂ Rn × · · ·Rn).

A similar argument shows that the special linear group

SL(n,R) = {A ∈ Matn(R)| det(A) = 1}

is an embedded submanifold of GL(n,R), and hence is a Lie group. The submanifold charts
are obtained by exponentiating the subspace

sl(n,R) = {B ∈ Matn(R)| tr(B) = 0},

using the identity det(exp(B)) = exp(tr(B)).

Actually, we could have saved most of this work with O(n), SL(n,R) once we have the following
beautiful result of E. Cartan:

Fact: Every closed subgroup of a Lie group is an embedded submanifold, hence is
again a Lie group.

We will prove this very soon, once we have developed some more basics of Lie group theory.
A closed subgroup of GL(n,R) (for suitable n) is called a matrix Lie group. Let us now give a
few more examples of Lie groups, without detailed justifications.
Examples 1.3. 1. Any finite-dimensional vector space V over R is a Lie group, with product

Mult given by addition.

2. Let A be a finite-dimensional associative algebra over R, with unit 1A. Then the group
A× of invertible elements is a Lie group. More generally, if n ∈ N we can create the
algebra Matn(A) of matrices with entries in A, and the general linear group

GL(n,A) := Matn(A)×

is a Lie group. If A is commutative, one has a determinant map det : Matn(A)→ A, and
GL(n,A) is the pre-image of A×. One may then define a special linear group

SL(n,A) = {g ∈ GL(n,A)| det(g) = 1}.
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3. We mostly have in mind the cases A = R,C,H. Here H is the algebra of quaternions
(due to Hamilton). Recall that H = R4 as a vector space, with elements (a, b, c, d) ∈ R4

written as
x = a+ ib+ jc+ kd

with imaginary units i, j, k. The algebra structure is determined by

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j.

Note that H is non-commutative (e.g. ji = −ij), hence SL(n,H) is not defined. On the
other hand, one can define complex conjugates

x = a− ib− jc− kd

and
|x|2 := xx = a2 + b2 + c2 + d2.

defines a norm x 7→ |x|, with |x1x2| = |x1||x2| just as for complex or real numbers. The
spaces Rn,Cn,Hn inherit norms, by putting

||x||2 =

n∑
i=1

|xi|2, x = (x1, . . . , xn).

The subgroups of GL(n,R), GL(n,C), GL(n,H) preserving this norm (in the sense that
||Ax|| = ||x|| for all x) are denoted

O(n), U(n), Sp(n)

and are called the orthogonal, unitary, and symplectic group, respectively. Since the norms
of C,H coincide with those of C ∼= R2, H = C2 ∼= R4, we have

U(n) = GL(n,C) ∩O(2n), Sp(n) = GL(n,H) ∩O(4n).

In particular, all of these groups are compact. One can also define

SO(n) = O(n) ∩ SL(n,R), SU(n) = U(n) ∩ SL(n,C),

these are called the special orthogonal and special unitary groups. The groups SO(n), SU(n),Sp(n)
are often called the classical groups (but this term is used a bit loosely).

4. For any Lie group G, its universal cover G̃ is again a Lie group. The universal cover
˜SL(2,R) is an example of a Lie group that is not isomorphic to a matrix Lie group.

1.2 Lie algebras

Definition 1.4. A Lie algebra is a vector space g, together with a bilinear map [·, ·] : g× g→ g
satisfying anti-symmetry

[ξ, η] = −[η, ξ] for all ξ, η ∈ g,

and the Jacobi identity,

[ξ, [η, ζ]] + [η, [ζ, ξ]] + [ζ, [ξ, η]] = 0 for all ξ, η, ζ ∈ g.

The map [·, ·] is called the Lie bracket. A morphism of Lie algebras g1, g2 is a linear map
φ : g1 → g2 preserving brackets.
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The space
gl(n,R) = Matn(R)

is a Lie algebra, with bracket the commutator of matrices. (The notation indicates that we
think of Matn(R) as a Lie algebra, not as an algebra.)

A Lie subalgebra of gl(n,R), i.e. a subspace preserved under commutators, is called a matrix
Lie algebra. For instance,

sl(n,R) = {B ∈ Matn(R) : tr(B) = 0}

and
o(n) = {B ∈ Matn(R) : BT = −B}

are matrix Lie algebras (as one easily verifies). It turns out that every finite-dimensional real
Lie algebra is isomorphic to a matrix Lie algebra (Ado’s theorem), but the proof is not easy.

The following examples of finite-dimensional Lie algebras correspond to our examples for Lie
groups. The origin of this correspondence will soon become clear.
Examples 1.5. 1. Any vector space V is a Lie algebra for the zero bracket.

2. Any associative algebra A can be viewed as a Lie algebra under commutator. Replacing
A with matrix algebras over A, it follows that gl(n,A) = Matn(A), is a Lie algebra, with
bracket the commutator. If A is commutative, then the subspace sl(n,A) ⊂ gl(n,A) of
matrices of trace 0 is a Lie subalgebra.

3. We are mainly interested in the cases A = R,C,H. Define an inner product on Rn,Cn,Hn
by putting

〈x, y〉 =

n∑
i=1

xiyi,

and define o(n), u(n), sp(n) as the matrices in gl(n,R), gl(n,C), gl(n,H) satisfying

〈Bx, y〉 = −〈x,By〉

for all x, y. These are all Lie algebras called the (infinitesimal) orthogonal, unitary, and
symplectic Lie algebras. For R,C one can impose the additional condition tr(B) = 0, thus
defining the special orthogonal and special unitary Lie algebras so(n), su(n). Actually,

so(n) = o(n)

since BT = −B already implies tr(B) = 0.

2 The covering SU(2)→ SO(3)

The Lie group SO(3) consists of rotations in 3-dimensional space. Let D ⊂ R3 be the closed
ball of radius π. Any element x ∈ D represents a rotation by an angle ||x|| in the direction of x.
This is a 1-1 correspondence for points in the interior of D, but if x ∈ ∂D is a boundary point
then x,−x represent the same rotation. Letting ∼ be the equivalence relation on D, given by
antipodal identification on the boundary, we have D3/ ∼= RP (3). Thus

SO(3) = RP (3)
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(at least, topologically). With a little extra effort (which we’ll make below) one can make this
into a diffeomorphism of manifolds.

By definition
SU(2) = {A ∈ Mat2(C)| A† = A−1, det(A) = 1}.

Using the formula for the inverse matrix, we see that SU(2) consists of matrices of the form

SU(2) =

{(
z −w
w z

)
| |w|2 + |z|2 = 1

}
.

That is, SU(2) = S3 as a manifold. Similarly,

su(2) =

{(
it −u
u −it

)
| t ∈ R, u ∈ C

}
gives an identification su(2) = R ⊕ C = R3. Note that for a matrix B of this form, det(B) =
t2 + |u|2, so that det corresponds to || · ||2 under this identification.

The group SU(2) acts linearly on the vector space su(2), by matrix conjugation: B 7→ ABA−1.
Since the conjugation action preserves det, we obtain a linear action on R3, preserving the
norm. This defines a Lie group morphism from SU(2) into O(3). Since SU(2) is connected, this
must take values in the identity component:

φ : SU(2)→ SO(3).

The kernel of this map consists of matrices A ∈ SU(2) such that ABA−1 = B for all B ∈ su(2).
Thus, A commutes with all skew-adjoint matrices of trace 0. Since A commutes with multiples of
the identity, it then commutes with all skew-adjoint matrices. But since Matn(C) = u(n)⊕iu(n)
(the decomposition into skew-adjoint and self-adjoint parts), it then follows that A is a multiple
of the identity matrix. Thus ker(φ) = {I,−I} is discrete. Since deφ is an isomorphism, it follows
that the map φ is a double covering. This exhibits SU(2) = S3 as the double cover of SO(3).

3 The Lie algebra of a Lie group

3.1 Review: Tangent vectors and vector fields

We begin with a quick reminder of some manifold theory, partly just to set up our notational
conventions.

Let M be a manifold, and C∞(M) its algebra of smooth real-valued functions. For m ∈M , we
define the tangent space TmM to be the space of directional derivatives:

TmM = {v ∈ Hom(C∞(M),R)| v(fg) = v(f)g + v(g)f}.

Here v(f) is local, in the sense that v(f) = v(f ′) if f ′ − f vanishes on a neighborhood of m.
Example 3.1. If γ : J →M , J ⊂ R is a smooth curve we obtain tangent vectors to the curve,

γ̇(t) ∈ Tγ(t)M, γ̇(t)(f) =
∂

∂t
|t=0f(γ(t)).
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Example 3.2. We have TxRn = Rn, where the isomorphism takes a ∈ Rn to the corresponding
velocity vector of the curve x+ ta. That is,

v(f) =
∂

∂t
|t=0f(x+ ta) =

n∑
i=1

ai
∂f

∂xi
.

A smooth map of manifolds φ : M →M ′ defines a tangent map:

dmφ : TmM → Tφ(m)M
′, (dmφ(v))(f) = v(f ◦ φ).

The locality property ensures that for an open neighborhood U ⊂ M , the inclusion identifies
TmU = TmM . In particular, a coordinate chart φ : U → φ(U) ⊂ Rn gives an isomorphism

dmφ : TmM = TmU → Tφ(m)φ(U) = Tφ(m)Rn = Rn.

Hence TmM is a vector space of dimension n = dimM . The union TM =
⋃
m∈M TmM is a

vector bundle over M , called the tangent bundle. Coordinate charts for M give vector bundle
charts for TM . For a smooth map of manifolds φ : M → M ′, the entirety of all maps dmφ
defines a smooth vector bundle map

dφ : TM → TM ′.

A vector field on M is a derivation X : C∞(M)→ C∞(M). That is, it is a linear map satisfying

X(fg) = X(f)g + fX(g).

The space of vector fields is denoted X(M) = Der(C∞(M)). Vector fields are local, in the sense
that for any open subset U there is a well-defined restriction X|U ∈ X(U) such that X|U (f |U ) =
(X(f))|U . For any vector field, one obtains tangent vectors Xm ∈ TmM by Xm(f) = X(f)|m.
One can think of a vector field as an assignment of tangent vectors, depending smoothly on
m. More precisely, a vector field is a smooth section of the tangent bundle TM . In local
coordinates, vector fields are of the form

∑
i ai

∂
∂xi

where the ai are smooth functions.

It is a general fact that the commutator of derivations of an algebra is again a derivation. Thus,
X(M) is a Lie algebra for the bracket

[X,Y ] = X ◦ Y − Y ◦X.

In general, smooth maps φ : M → M ′ of manifolds do not induce maps of the Lie algebras of
vector fields (unless φ is a diffeomorphism). One makes the following definition.
Definition 3.3. Let φ : M → N be a smooth map. Vector fields X,Y on M,N are called
φ-related, written X ∼φ Y , if

X(f ◦ φ) = Y (f) ◦ φ

for all f ∈ C∞(M ′).

In short, X ◦ φ∗ = φ∗ ◦ Y where φ∗ : C∞(N)→ C∞(M), f 7→ f ◦ φ.

One has X ∼φ Y if and only if Yφ(m) = dmφ(Xm). From the definitions, one checks

X1 ∼φ Y1, X2 ∼φ Y2 ⇒ [X1, X2] ∼φ [Y1, Y2].
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Example 3.4. Let j : S ↪→ M be an embedded submanifold. We say that a vector field X is
tangent to S if Xm ∈ TmS ⊂ TmM for all m ∈ S. We claim that if two vector fields are tangent
to S then so is their Lie bracket. That is, the vector fields on M that are tangent to S form a
Lie subalgebra.

Indeed, the definition means that there exists a vector field XS ∈ X(S) such that XS ∼j X.
Hence, if X,Y are tangent to S, then [XS , YS ] ∼j [X,Y ], so [XS , YS ] is tangent.

Similarly, the vector fields vanishing on S are a Lie subalgebra.

Let X ∈ X(M). A curve γ(t), t ∈ J ⊂ R is called an integral curve of X if for all t ∈ J ,

γ̇(t) = Xγ(t).

In local coordinates, this is an ODE dxi
dt

= ai(x(t)). The existence and uniqueness theorem for

ODE’s (applied in coordinate charts, and then patching the local solutions) shows that for any
m ∈M , there is a unique maximal integral curve γ(t), t ∈ Jm with γ(0) = m.
Definition 3.5. A vector field X is complete if for all m ∈M , the maximal integral curve with
γ(0) = m is defined for all t ∈ R.

In this case, one obtains a smooth map

Φ: R×M →M, (t,m) 7→ Φt(m)

such that γ(t) = Φ−t(m) is the integral curve through m. The uniqueness property gives

Φ0 = Id, Φt1+t2 = Φt1 ◦ Φt2

i.e. t 7→ Φt is a group homomorphism. Conversely, given such a group homomorphism such
that the map Φ is smooth, one obtains a vector field X by setting

X =
∂

∂t
|t=0Φ∗−t,

as operators on functions. That is, X(f)(m) = ∂
∂t |t=0f(Φ−t(m)). 1

The Lie bracket of vector fields measure the non-commutativity of their flows. In particular, if
X,Y are complete vector fields, with flows ΦXt , ΦYs , then [X,Y ] = 0 if and only if

ΦXt ◦ ΦYs = ΦYs ◦ ΦXt .

In this case, X + Y is again a complete vector field with flow ΦX+Y
t = ΦXt ◦ ΦYt . (The right

hand side defines a flow since the flows of X,Y commute, and the corresponding vector field is
identified by taking a derivative at t = 0.)

1The minus sign is convention, but it is motivated as follows. Let Diff(M) be the infinite-dimensional group
of diffeomorphisms of M . It acts on C∞(M) by Φ.f = f ◦ Φ−1 = (Φ−1)∗f . Here, the inverse is needed so
that Φ1.Φ2.f = (Φ1Φ2).f . We think of vector fields as ‘infinitesimal flows’, i.e. informally as the tangent
space at id to Diff(M). Hence, given a curve t 7→ Φt through Φ0 = id, smooth in the sense that the map
R×M →M, (t,m) 7→ Φt(m) is smooth, we define the corresponding vector field X = ∂

∂t
|t=0Φt in terms of the

action on functions: as

X.f =
∂

∂t
|t=0Φt.f =

∂

∂t
|t=0(Φ−1

t )∗f.

If Φt is a flow, we have Φ−1
t = Φ−t.
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3.2 The Lie algebra of a Lie group

Let G be a Lie group, and TG its tangent bundle. For all a ∈ G, the left,right translations

La : G→ G, g 7→ ag

Ra : G→ G, g 7→ ga

are smooth maps. Their differentials at e define isomorphisms dgLa : TgG → TagG, and simi-
larly for Ra. Let

g = TeG

be the tangent space to the group unit.

A vector field X ∈ X(G) is called left-invariant if

X ∼La X

for all a ∈ G, i.e. if it commutes with L∗a. The space XL(G) of left-invariant vector fields is
thus a Lie subalgebra of X(G). Similarly the space of right-invariant vector fields XR(G) is a
Lie subalgebra.
Lemma 3.6. The map

XL(G)→ g, X 7→ Xe

is an isomorphism of vector spaces. (Similarly for XR(G).)

Proof. For a left-invariant vector field, Xa = (deLa)Xe, hence the map is injective. To show
that it is surjective, let ξ ∈ g, and put Xa = (deLa)ξ ∈ TaG. We have to show that the map
G→ TG, a 7→ Xa is smooth. It is the composition of the map G→ G× g, g 7→ (g, ξ) (which
is obviously smooth) with the map G × g → TG, (g, ξ) 7→ deLg(ξ). The latter map is the
restriction of d Mult : TG× TG→ TG to G× g ⊂ TG× TG, and hence is smooth.

We denote by ξL ∈ XL(G), ξR ∈ XR(G) the left,right invariant vector fields defined by ξ ∈ g.
Thus

ξL|e = ξR|e = ξ

Definition 3.7. The Lie algebra of a Lie group G is the vector space g = TeG, equipped with
the unique bracket such that

[ξ, η]L = [ξL, ηL], ξ ∈ g.

Remark 3.8. If you use the right-invariant vector fields to define the bracket on g, we get a
minus sign. Indeed, note that Inv : G → G takes left translations to right translations. Thus,
ξR is Inv-related to some left invariant vector field. Since de Inv = − Id, we see ξR ∼Inv −ξL.
Consequently,

[ξR, ηR] ∼Inv [−ξL,−ηL] = [ξ, η]L.

But also −[ξ, η]R ∼Inv [ξ, η]L, hence we get

[ξR, ζR] = −[ξ, ζ]R.

The construction of a Lie algebra is compatible with morphisms. That is, we have a functor
from Lie groups to finite-dimensional Lie algebras.
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Theorem 3.9. For any morphism of Lie groups φ : G → G′, the tangent map deφ : g → g′ is
a morphism of Lie algebras. For all ξ ∈ g, ξ′ = deφ(ξ) one has

ξL ∼φ (ξ′)L, ξR ∼φ (ξ′)R.

Proof. Suppose ξ ∈ g, and let ξ′ = deφ(ξ) ∈ g′. The property φ(ab) = φ(a)φ(b) shows that
Lφ(a) ◦ φ = φ ◦ La. Taking the differential at e, and applying to ξ we find (deLφ(a))ξ

′ =
(daφ)(deLa(ξ)) hence (ξ′)Lφ(a) = (daφ)(ξLa ). That is ξL ∼φ (ξ′)L. The proof for right-invariant
vector fields is similar. Since the Lie brackets of two pairs of φ-related vector fields are again
φ-related, it follows that deφ is a Lie algebra morphism.

Remark 3.10. Two special cases are worth pointing out.

1. Let V be a finite-dimensional (real) vector space. A representation of a Lie group G on V
is a Lie group morphism G→ GL(V ). A representation of a Lie algebra g on V is a Lie
algebra morphism g→ gl(V ). The Theorem shows that the differential of any Lie group
representation is a representation of its a Lie algebra.

2. An automorphism of a Lie group G is a Lie group morphism φ : G→ G from G to itself,
with φ a diffeomorphism. An automorphism of a Lie algebra is an invertible morphism
from g to itself. By the Theorem, the differential of any Lie group automorphism is an
automorphism of its Lie algebra. As an example, SU(n) has a Lie group automorphism
given by complex conjugation of matrices; its differential is a Lie algebra automorphism
of su(n) given again by complex conjugation.

Exercise 3.11. Let φ : G→ G be a Lie group automorphism. Show that its fixed point set is a
closed subgroup of G, hence a Lie subgroup. Similarly for Lie algebra automorphisms. What
is the fixed point set for the complex conjugation automorphism of SU(n)?

4 The exponential map

Theorem 4.1. The left-invariant vector fields ξL are complete, i.e. they define a flow Φξt such
that

ξL =
∂

∂t
|t=0(Φξ−t)

∗.

Letting φξ(t) denote the unique integral curve with φξ(0) = e. It has the property

φξ(t1 + t2) = φξ(t1)φξ(t2),

and the flow of ξL is given by right translations:

Φξt (g) = gφξ(−t).

Similarly, the right-invariant vector fields ξR are complete. φξ(t) is an integral curve for ξR as
well, and the flow of ξR is given by left translations, g 7→ φξ(−t)g.

Proof. If γ(t), t ∈ J ⊂ R is an integral curve of a left-invariant vector field ξL, then its left
translates aγ(t) are again integral curves. In particular, for t0 ∈ J the curve t 7→ γ(t0)γ(t) is
again an integral curve. Hence it coincides with γ(t0 + t) for all t ∈ J ∩ (J − t0). In this way,
an integral curve defined for small |t| can be extended to an integral curve for all t, i.e. ξL is
complete.
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Since ξL is left-invariant, so is its flow Φξt . Hence

Φξt (g) = Φξt ◦ Lg(e) = Lg ◦ Φξt (e) = gΦξt (e) = gφξ(−t).

The property Φξt1+t2 = Φξt1Φξt2 shows that φξ(t1+t2) = φξ(t1)φξ(t2). Finally, since ξL ∼Inv −ξR,
the image

Inv(φξ(t)) = φξ(t)−1 = φξ(−t)
is an integral curve of −ξR. Equivalently, φξ(t) is an integral curve of ξR.

Since left and right translations commute, it follows in particular that

[ξL, ηR] = 0.

Definition 4.2. A 1-parameter subgroup of G is a group homomorphism φ : R→ G.

We have seen that every ξ ∈ g defines a 1-parameter group, by taking the integral curve through
e of the left-invariant vector field ξL. Every 1-parameter group arises in this way:
Proposition 4.3. If φ is a 1-parameter subgroup of G, then φ = φξ where ξ = φ̇(0). One has

φsξ(t) = φξ(st).

The map
R× g→ G, (t, ξ) 7→ φξ(t)

is smooth.

Proof. Let φ(t) be a 1-parameter group. Then Φt(g) := gφ(−t) defines a flow. Since this
flow commutes with left translations, it is the flow of a left-invariant vector field, ξL. Here ξ is
determined by taking the derivative of Φ−t(e) = φ(t) at t = 0: ξ = φ̇(0). This shows φ = φξ. As
an application, since ψ(t) = φξ(st) is a 1-parameter group with ψ̇ξ(0) = sφ̇ξ(0) = sξ, we have
φξ(st) = φsξ(t). Smoothness of the map (t, ξ) 7→ φξ(t) follows from the smooth dependence of
solutions of ODE’s on parameters.

Definition 4.4. The exponential map for the Lie group G is the smooth map defined by

exp: g→ G, ξ 7→ φξ(1),

where φξ(t) is the 1-parameter subgroup with φ̇ξ(0) = ξ.
Proposition 4.5. We have

φξ(t) = exp(tξ).

If [ξ, η] = 0 then
exp(ξ + η) = exp(ξ) exp(η).

Proof. By the previous Proposition, φξ(t) = φtξ(1) = exp(tξ). For the second claim, note that

[ξ, η] = 0 implies that ξL, ηL commute. Hence their flows Φξt , Φηt , and Φξt ◦ Φηt is the flow of

ξL + ηL. Hence it coincides with Φξ+ηt . Applying to e, we get φξ(t)φη(t) = φξ+η(t). Now put
t = 1.

In terms of the exponential map, we may now write the flow of ξL as Φξt (g) = g exp(−tξ), and
similarly for the flow of ξR. That is,

ξL =
∂

∂t
|t=0R

∗
exp(tξ), ξR =

∂

∂t
|t=0L

∗
exp(tξ).
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Proposition 4.6. The exponential map is functorial with respect to Lie group homomorphisms
φ : G→ H. That is, we have a commutative diagram

G
φ−−−−→ H

exp

x xexp

g −−−−→
deφ

h

Proof. t 7→ φ(exp(tξ)) is a 1-parameter subgroup of H, with differential at e given by

d

dt

∣∣∣
t=0

φ(exp(tξ)) = deφ(ξ).

Hence φ(exp(tξ)) = exp(tdeφ(ξ)). Now put t = 1.

Proposition 4.7. Let G ⊂ GL(n,R) be a matrix Lie group, and g ⊂ gl(n,R) its Lie algebra.
Then exp: g→ G is just the exponential map for matrices,

exp(ξ) =

∞∑
n=0

1

n!
ξn.

Furthermore, the Lie bracket on g is just the commutator of matrices.

Proof. By the previous Proposition, applied to the inclusion of G in GL(n,R), the exponential
map for G is just the restriction of that for GL(n,R). Hence it suffices to prove the claim for
G = GL(n,R). The function

∑∞
n=0

tn

n! ξ
n is a 1-parameter group in GL(n,R), with derivative

at 0 equal to ξ ∈ gl(n,R). Hence it coincides with exp(tξ). Now put t = 1.

Proposition 4.8. For a matrix Lie group G ⊂ GL(n,R), the Lie bracket on g = TIG is just
the commutator of matrices.

Proof. It suffices to prove for G = GL(n,R). Using ξL = ∂
∂t

∣∣∣
t=0

R∗exp(tξ) we have

∂

∂s

∣∣∣
s=0

∂

∂t

∣∣∣
t=0

(R∗exp(−tξ)R
∗
exp(−sη)R

∗
exp(tξ)R

∗
exp(sη))

=
∂

∂s

∣∣∣
s=0

(R∗exp(−sη)ξ
LR∗exp(sη) − ξ

L)

= ξLηL − ηLξL

= [ξ, η]L.

On the other hand, write

R∗exp(−tξ)R
∗
exp(−sη)R

∗
exp(tξ)R

∗
exp(sη) = R∗exp(−tξ) exp(−sη) exp(tξ) exp(sη).

Since the Lie group exponential map for GL(n,R) coincides with the exponential map for
matrices, we may use Taylor’s expansion,

exp(−tξ) exp(−sη) exp(tξ) exp(sη) = I + st(ξη − ηξ) + . . . = exp(st(ξη − ηξ)) + . . .

where . . . denotes terms that are cubic or higher in s, t. Hence

R∗exp(−tξ) exp(−sη) exp(tξ) exp(sη) = R∗exp(st(ξη−ηξ) + . . .



13

and consequently

∂

∂s

∣∣∣
s=0

∂

∂t

∣∣∣
t=0

R∗exp(−tξ) exp(−sη) exp(tξ) exp(sη) =
∂

∂s

∣∣∣
s=0

∂

∂t

∣∣∣
t=0

R∗exp(st(ξη−ηξ)) = (ξη − ηξ)L.

We conclude that [ξ, η] = ξη − ηξ.

Remark 4.9. Had we defined the Lie algebra using right-invariant vector fields, we would have
obtained minus the commutator of matrices. Nonetheless, some authors use that convention.

The exponential map gives local coordinates for the group G on a neighborhood of e:
Proposition 4.10. The differential of the exponential map at the origin is d0 exp = id. As a
consequence, there is an open neighborhood U of 0 ∈ g such that the exponential map restricts
to a diffeomorphism U → exp(U).

Proof. Let γ(t) = tξ. Then γ̇(0) = ξ since exp(γ(t)) = exp(tξ) is the 1-parameter group, we
have

(d0 exp)(ξ) =
∂

∂t
|t=0 exp(tξ) = ξ.

5 Cartan’s theorem on closed subgroups

Using the exponential map, we are now in position to prove Cartan’s theorem on closed sub-
groups.
Theorem 5.1. Let H be a closed subgroup of a Lie group G. Then H is an embedded subman-
ifold, and hence is a Lie subgroup.

We first need a Lemma. Let V be a Euclidean vector space, and S(V ) its unit sphere. For
v ∈ V \{0}, let [v] = v

||v|| ∈ S(V ).

Lemma 5.2. Let vn, v ∈ V \{0} with limn→∞ vn = 0. Then

lim
n→∞

[vn] = [v]⇔ ∃an ∈ N : lim
n→∞

anvn = v.

Proof. The implication ⇐ is obvious. For the opposite direction, suppose limn→∞[vn] = [v].

Let an ∈ N be defined by an− 1 < ||v||
||vn|| ≤ an. Since vn → 0, we have limn→∞ an

||vn||
||v|| = 1, and

anvn =

(
an
||vn||
||v||

)
[vn] ||v|| → [v] ||v|| = v.

Proof of E. Cartan’s theorem. It suffices to construct a submanifold chart near e ∈ H. (By
left translation, one then obtains submanifold charts near arbitrary a ∈ H.) Choose an inner
product on g.

We begin with a candidate for the Lie algebra of H. Let W ⊂ g be the subset such that ξ ∈W
if and only if either ξ = 0, or ξ 6= 0 and there exists ξn 6= 0 with

exp(ξn) ∈ H, ξn → 0, [ξn]→ [ξ].

We will now show the following:
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(i) exp(W ) ⊂ H,

(ii) W is a subspace of g,

(iii) There is an open neighborhood U of 0 and a diffeomorphism φ : U → φ(U) ⊂ G with
φ(0) = e such that

φ(U ∩W ) = φ(U) ∩H.

(Thus φ defines a submanifold chart near e.)

Step (i). Let ξ ∈W\{0}, with sequence ξn as in the definition of W . By the Lemma, there are
an ∈ N with anξn → ξ. Since exp(anξn) = exp(ξn)an ∈ H, and H is closed, it follows that

exp(ξ) = lim
n→∞

exp(anξn) ∈ H.

Step (ii). Since the subset W is invariant under scalar multiplication, we just have to show
that it is closed under addition. Suppose ξ, η ∈ W . To show that ξ + η ∈ W , we may assume
that ξ, η, ξ + η are all non-zero. For t sufficiently small, we have

exp(tξ) exp(tη) = exp(u(t))

for some smooth curve t 7→ u(t) ∈ g with u(0) = 0. Then exp(u(t)) ∈ H and

lim
n→∞

nu(
1

n
) = lim

h→0

u(h)

h
= u̇(0) = ξ + η.

hence u( 1
n )→ 0, exp(u( 1

n ) ∈ H, [u( 1
n )]→ [ξ + η]. This shows [ξ + η] ∈W , proving (ii).

Step (iii). Let W ′ be a complement to W in g, and define

φ : g ∼= W ⊕W ′ → G, φ(ξ + ξ′) = exp(ξ) exp(ξ′).

Since d0φ is the identity, there is an open neighborhood U ⊂ g of 0 such that φ : U → φ(U) is
a diffeomorphism. It is automatic that φ(W ∩ U) ⊂ φ(W ) ∩ φ(U) ⊂ H ∩ φ(U). We want to
show that we can take U sufficiently small so that we also have the opposite inclusion

H ∩ φ(U) ⊂ φ(W ∩ U).

Suppose not. Then, any neighborhood Un ⊂ g = W ⊕W ′ of 0 contains an element (ηn, η
′
n)

such that
φ(ηn, η

′
n) = exp(ηn) exp(η′n) ∈ H

(i.e. exp(η′n) ∈ H) but (ηn, η
′
n) 6∈ W (i.e. η′n 6= 0). Thus, taking Un to be a nested sequence

of neighborhoods with intersection {0}, we could construct a sequence η′n ∈ W ′ − {0} with
η′n → 0 and exp(η′n) ∈ H. Passing to a subsequence we may assume that [η′n] → [η] for some
η ∈ W ′\{0}. On the other hand, such a convergence would mean η ∈ W , by definition of W .
Contradiction.

As remarked earlier, Cartan’s theorem is very useful in practice. For a given Lie group G, the
term ‘closed subgroup’ is often used as synonymous to ‘embedded Lie subgroup’.
Examples 5.3. 1. The matrix groups G = O(n),Sp(n),SL(n,R), . . . are all closed subgroups

of some GL(N,R), and hence are Lie groups.

2. Suppose that φ : G → H is a morphism of Lie groups. Then ker(φ) = φ−1(e) ⊂ G is a
closed subgroup. Hence it is an embedded Lie subgroup of G.



15

3. The center Z(G) of a Lie group G is the set of all a ∈ G such that ag = ga for all a ∈ G.
It is a closed subgroup, and hence an embedded Lie subgroup.

4. Suppose H ⊂ G is a closed subgroup. Its normalizer NG(H) ⊂ G is the set of all a ∈ G
such that aH = Ha. (I.e. h ∈ H implies aha−1 ∈ H.) This is a closed subgroup, hence
a Lie subgroup. The centralizer ZG(H) is the set of all a ∈ G such that ah = ha for all
h ∈ H, it too is a closed subgroup, hence a Lie subgroup.

The E. Cartan theorem is just one of many ‘automatic smoothness’ results in Lie theory. Here
is another.
Theorem 5.4. Let G,H be Lie groups, and φ : G→ H be a continuous group morphism. Then
φ is smooth.

As a corollary, a given topological group carries at most one smooth structure for which it is a
Lie group. For profs of these (and stronger) statements, see the book by Duistermaat-Kolk.

6 The adjoint representations

6.1 Automorphisms

The group Aut(g) of automorphisms of a Lie algebra g is closed in the group End(g)× of vector
space automorphisms, hence it is a Lie group. To identify its Lie algebra, let D ∈ End(g)
be such that exp(tD) ∈ Aut(g) for t ∈ R. Taking the derivative of the defining condition
exp(tD)[ξ, η] = [exp(tD)ξ, exp(tD)η], we obtain the property

D[ξ, η] = [Dξ, η] + [ξ,Dη]

saying that D is a derivation of the Lie algebra. Conversely, if D is a derivation then

Dn[ξ, η] =

n∑
k=0

(
n

k

)
[Dkξ, Dn−kη]

by induction, which then shows that exp(D) =
∑
n
Dn

n! is an automorphism. Hence the Lie
algebra of Aut(g) is the Lie algebra Der(g) of derivations of g.

6.2 The adjoint representation of G

Recall that an automorphism of a Lie group G is an invertible morphism from G to itself. The
automorphisms form a group Aut(G). Any a ∈ G defines an ‘inner’ automorphism Ada ∈
Aut(G) by conjugation:

Ada(g) = aga−1

Indeed, Ada is an automorphism since Ad−1
a = Ada−1 and

Ada(g1g2) = ag1g2a
−1 = ag1a

−1ag2a
−1 = Ada(g1) Ada(g2).

Note also that Ada1a2 = Ada1 Ada2 , thus we have a group morphism

Ad: G→ Aut(G)
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into the group of automorphisms. The kernel of this morphism is the center Z(G), the image
is (by definition) the subgroup Int(G) of inner automorphisms. Note that for any φ ∈ Aut(G),
and any a ∈ G,

φ ◦Ada ◦φ−1 = Adφ(a) .

That is, Int(G) is a normal subgroup of Aut(G). (I.e. the conjugate of an inner automorphism
by any automorphism is inner.) It follows that Out(G) = Aut(G)/ Int(G) inherits a group
structure; it is called the outer automorphism group.
Example 6.1. If G = SU(2) the complex conjugation of matrices is an inner automorphism, but
for G = SU(n) with n ≥ 3 it cannot be inner (since an inner automorphism has to preserve the
spectrum of a matrix). Indeed, one know that Out(SU(n)) = Z2 for n ≥ 3.

The differential of the automorphism Ada : G→ G is a Lie algebra automorphism, denoted by
the same letter: Ada = de Ada : g→ g. The resulting map

Ad: G→ Aut(g)

is called the adjoint representation of G. Since the Ada are Lie algebra/group morphisms, they
are compatible with the exponential map,

exp(Ada ξ) = Ada exp(ξ).

Remark 6.2. If G ⊂ GL(n,R) is a matrix Lie group, then Ada ∈ Aut(g) is the conjugation of
matrices

Ada(ξ) = aξa−1.

This follows by taking the derivative of Ada(exp(tξ)) = a exp(tξ)a−1, using that exp is just the
exponential series for matrices.

6.3 The adjoint representation of g

Let Der(g) be the Lie algebra of derivations of the Lie algebra g. There is a Lie algebra
morphism,

ad: g→ Der(g), ξ 7→ [ξ, ·].

The fact that adξ is a derivation follows from the Jacobi identity; the fact that ξ 7→ adξ it
is a Lie algebra morphism is again the Jacobi identity. The kernel of ad is the center of the
Lie algebra g, i.e. elements having zero bracket with all elements of g, while the image is
the Lie subalgebra Int(g) ⊂ Der(g) of inner derivations. It is a normal Lie subalgebra, i.e
[Der(g), Int(g)] ⊂ Int(g), and the quotient Lie algebra Out(g) are the outer automorphims.

Suppose now that G is a Lie group, with Lie algebra g. We have remarked above that the
Lie algebra of Aut(g) is Der(g). Recall that the differential of any G-representation is a g-
representation. In particular, we can consider the differential of G→ Aut(g).
Theorem 6.3. If g is the Lie algebra of G, then the adjoint representation ad: g→ Der(g) is
the differential of the adjoint representation Ad: G→ Aut(g). One has the equality of operators

exp(adξ) = Ad(exp ξ)

for all ξ ∈ g.
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Proof. For the first part we have to show ∂
∂t

∣∣
t=0

Adexp(tξ) η = adξ η. This is easy if G is a
matrix Lie group:

∂

∂t

∣∣∣
t=0

Adexp(tξ) η =
∂

∂t

∣∣∣
t=0

exp(tξ)η exp(−tξ) = ξη − ηξ = [ξ, η].

For general Lie groups we compute, using

exp(sAdexp(tξ) η) = Adexp(tξ) exp(sη) = exp(tξ) exp(sη) exp(−tξ),

∂

∂t

∣∣∣
t=0

(Adexp(tξ) η)L =
∂

∂t

∣∣∣
t=0

∂

∂s

∣∣∣
s=0

R∗exp(sAdexp(tξ) η)

=
∂

∂t

∣∣∣
t=0

∂

∂s

∣∣∣
s=0

R∗exp(tξ) exp(sη) exp(−tξ)

=
∂

∂t

∣∣∣
t=0

∂

∂s

∣∣∣
s=0

R∗exp(tξ)R
∗
exp(sη)R

∗
exp(−tξ)

=
∂

∂t

∣∣∣
t=0

R∗exp(tξ) η
L R∗exp(−tξ)

= [ξL, ηL]

= [ξ, η]L = (adξ η)L.

This proves the first part. The second part is the commutativity of the diagram

G
Ad−−−−→ Aut(g)

exp

x xexp

g −−−−→
ad

Der(g)

which is just a special case of the functoriality property of exp with respect to Lie group
morphisms.

Remark 6.4. As a special case, this formula holds for matrices. That is, for B,C ∈ Matn(R),

eB C e−B =

∞∑
n=0

1

n!
[B, [B, · · · [B,C] · · · ]].

The formula also holds in some other contexts, e.g. if B,C are elements of an algebra with B
nilpotent (i.e. BN = 0 for some N). In this case, both the exponential series for eB and the
series on the right hand side are finite. (Indeed, [B, [B, · · · [B,C] · · · ]] with n B’s is a sum of
terms BjCBn−j , and hence must vanish if n ≥ 2N .)

7 The differential of the exponential map

We had seen that d0 exp = id. More generally, one can derive a formula for the differential of
the exponential map at arbitrary points ξ ∈ g,

dξ exp: g = Tξg→ Texp ξG.

Using left translation, we can move Texp ξG back to g, and obtain an endomorphism of g.
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Theorem 7.1. The differential of the exponential map exp: g → G at ξ ∈ g is the linear
operator dξ exp: g→ Texp(ξ)g given by the formula,

dξ exp = (deLexp ξ) ◦
1− exp(− adξ)

adξ
.

Here the operator on the right hand side is defined to be the result of substituting adξ in the

entire holomorphic function 1−e−z
z . Equivalently, it may be written as an integral

1− exp(− adξ)

adξ
=

∫ 1

0

ds exp(−s adξ).

Proof. We have to show that for all ξ, η ∈ g,

(dξ exp)(η) ◦ L∗exp(−ξ) =

∫ 1

0

ds (exp(−s adξ)η)

as operators on functions f ∈ C∞(G). To compute the left had side, write

(dξ exp)(η) ◦ L∗exp(−ξ)(f) =
∂

∂t

∣∣∣
t=0

(L∗exp(−ξ)(f))(exp(ξ + tη)) =
∂

∂t

∣∣∣
t=0

f(exp(−ξ) exp(ξ + tη)).

We think of this as the value of ∂
∂t

∣∣∣
t=0

R∗exp(−ξ)R
∗
exp(ξ+tη)f at e, and compute as follows: 2

∂

∂t

∣∣∣
t=0

R∗exp(−ξ)R
∗
exp(ξ+tη) =

∫ 1

0

ds
∂

∂t

∣∣∣
t=0

∂

∂s
R∗exp(−sξ)R

∗
exp(s(ξ+tη)

=

∫ 1

0

ds
∂

∂t

∣∣∣
t=0

R∗exp(−sξ)(tη)LR∗exp(s(ξ+tη)

=

∫ 1

0

ds R∗exp(−sξ) η
L R∗exp(s(ξ))

=

∫ 1

0

ds (Adexp(−sξ) η)L

=

∫ 1

0

ds (exp(−s adξ)η)L.

Applying this result to f at e, we obtain
∫ 1

0
ds (exp(−s adξ)η)(f) as desired.

Corollary 7.2. The exponential map is a local diffeomorphism near ξ ∈ g if and only if adξ
has no eigenvalue in the set 2πiZ\{0}.

Proof. dξ exp is an isomorphism if and only if
1−exp(− adξ)

adξ
is invertible, i.e. has non-zero deter-

minant. The determinant is given in terms of the eigenvalues of adξ as a product,
∏
λ

1−e−λ
λ .

This vanishes if and only if there is a non-zero eigenvalue λ with eλ = 1.

2We will use the identities ∂
∂s
R∗

exp(sζ)
= R∗

exp(sζ)
ζL = ζL R∗

exp(sζ)
for all ζ ∈ g. Proof: ∂

∂s
R∗

exp(sζ)
=

∂
∂u
|u=0R∗exp((s+u)ζ) = ∂

∂u
|u=0R∗exp(uζ)R

∗
exp(sζ)

= ζLR∗
exp(sζ)

.
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As an application, one obtains a version of the Baker-Campbell-Hausdorff formula. Let g 7→
log(g) be the inverse function to exp, defined for g close to e. For ξ, η ∈ g close to 0, the
function

log(exp(ξ) exp(η))

The BCH formula gives the Taylor series expansion of this function. The series starts out with

log(exp(ξ) exp(η)) = ξ + η + 1
2 [ξ, η] + · · ·

but gets rather complicated. To derive the formula, introduce a t-dependence, and let f(t, ξ, η)
be defined by exp(ξ) exp(tη) = exp(f(t, ξ, η)) (for ξ, η sufficiently small). Thus

exp(f) = exp(ξ) exp(tη)

We have, on the one hand,

(deLexp(f))
−1 ∂

∂t
exp(f) = deL

−1
exp(tη)

∂

∂t
exp(tη) = η.

On the other hand, by the formula for the differential of exp,

(deLexp(f))
−1 ∂

∂t
exp(f) = (deLexp(f))

−1(df exp)(
∂f

∂t
) =

1− e− adf

adf
(
∂f

∂t
).

Hence
df

dt
=

adf
1− e− adf

η.

Letting χ be the function, holomorphic near w = 1,

χ(w) =
log(w)

1− w−1
= 1 +

∞∑
n=1

(−1)n+1

n(n+ 1)
(w − 1)n,

we may write the right hand side as χ(eadf )η. By Applying Ad to the defining equation for f
we obtain eadf = eadξet adη . Hence

df

dt
= χ(eadξet adη )η.

Finally, integrating from 0 to 1 and using f(0) = ξ, f(1) = log(exp(ξ) exp(η)), we find:

log(exp(ξ) exp(η)) = ξ +
(∫ 1

0

χ(eadξet adη )dt
)
η.

To work out the terms of the series, one puts

w − 1 = eadξet adη − 1 =
∑
i+j≥1

tj

i!j!
adiξ adjη

in the power series expansion of χ, and integrates the resulting series in t. We arrive at:
Theorem 7.3 (Baker-Campbell-Hausdorff series). Let G be a Lie group, with exponential map
exp: g→ G. For ξ, η ∈ g sufficiently small we have the following formula

log(exp(ξ) exp(η)) = ξ + η +

∞∑
n=1

(−1)n+1

n(n+ 1)

(∫ 1

0

dt
( ∑
i+j≥1

tj

i!j!
adiξ adjη

)n)
η.
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An important point is that the resulting Taylor series in ξ, η is a Lie series: all terms of the
series are of the form of a constant times adn1

ξ adm2
η · · · adnrξ η. The first few terms read,

log(exp(ξ) exp(η)) = ξ + η + 1
2 [ξ, η] +

1

12
[ξ, [ξ, η]]− 1

12
[η, [ξ, η]] +

1

24
[η, [ξ, [η, ξ]]] + . . . .

Exercise 7.4. Work out these terms from the formula.

There is a somewhat better version of the BCH formula, due to Dynkin. A good discussion can
be found in the book by Onishchik-Vinberg, Chapter I.3.2.

8 Actions of Lie groups and Lie algebras

8.1 Lie group actions

Definition 8.1. An action of a Lie group G on a manifold M is a group homomorphism

A : G→ Diff(M), g 7→ Ag

into the group of diffeomorphisms on M , such that the action map

G×M →M, (g,m) 7→ Ag(m)

is smooth.

We will often write g.m rather than Ag(m). With this notation, g1.(g2.m) = (g1g2).m and
e.m = m. A map Φ: M1 → M2 between G-manifolds is called G-equivariant if g.Φ(m) =
Φ(g.m) for all m ∈M , i.e. the following diagram commutes:

G×M1 −−−−→ M1yid×Φ

yΦ

G×M2 −−−−→ M2

where the horizontal maps are the action maps.
Examples 8.2. 1. An R-action on M is the same thing as a global flow.

2. The group G acts M = G by right multiplication, Ag = Rg−1 , left multiplication, Ag =
Lg, and by conjugation, Ag = Adg = Lg ◦ Rg−1 . The left and right action commute,
hence they define an action of G × G. The conjugation action can be regarded as the
action of the diagonal subgroup G ⊂ G×G.

3. Any G-representation G → End(V ) can be regarded as a G-action, by viewing M as a
manifold.

4. For any closed subgroup H ⊂ G, the space of right cosets G/H = {gH| g ∈ G} has a
unique manifold structure such that the quotient map G→ G/H is a smooth submersion,
and the action of G by left multiplication on G descends to a smooth G-action on G/H.
(Some ideas of teh proof will be explained below.)

5. The defining represenation of the orthogonal group O(n) on Rn restricts to an action
on the unit sphere Sn−1, which in turn descends to an action on the projective space
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RP (n−1). One also has actions on the Grassmann manifold GrR(k, n) of k-planes in Rn, or
on the flag manifold Fl(n) (consisting of sequences {0} = V0 ⊂ V1 ⊂ · · ·Vn−1 ⊂ Vn = Rn
with dimVi = i). These examples are all of the form O(n)/H for various choices of H.
(E.g, for Gr(k, n) one takes H to be the subgroup preserving Rk ⊂ Rn.)

8.2 Lie algebra actions

Definition 8.3. An action of a finite-dimensional Lie algebra g on M is a Lie algebra homo-
morphism g→ X(M), ξ 7→ Aξ such that the action map

g×M → TM, (ξ,m) 7→ Aξ|m

is smooth.

We will often write ξM =: Aξ for the vector field corresponding to ξ. Thus, [ξM , ηM ] = [ξ, η]M
for all ξ, η ∈ g. A smooth map Φ: M1 → M2 between to g-manifolds is called equivariant if
ξM1
∼Φ ξM2

for all ξ ∈ g.
Examples 8.4. 1. Any vector field X defines an action of the Abelian Lie algebra R, by

λ 7→ λX.

2. Any Lie algebra representation φ : g → gl(V ) may be viewed as a Lie algebra action.
Indeed, if f ∈ C∞(V ) we have dvf ∈ V ∗, and

(Aξf)(v) =
d

dt
|t=0f(v − tξ.v)

defines a g-action.

3. For any Lie group G, we have actions of its Lie algebra g by Aξ = ξL, Aξ = −ξR and
Aξ = ξL − ξR.

4. Given a closed subgroup H ⊂ G, the vector fields −ξR ∈ X(G), ξ ∈ g are invariant under
the right multiplication, hence they are related under the quotient map to vector fields on
G/H. That is, there is a unique g-action on G/H such that the quotient map G→ G/H
is equivariant.

Definition 8.5. Let G be a Lie group with Lie algebra g. Given a G-action g 7→ Ag on M , one
defines its generating vector fields by

Aξ =
d

dt

∣∣∣
t=0
A∗exp(−tξ).

Example 8.6. The generating vector field for the action by right multiplication

Aa = Ra−1 ∈ Diff(G)

are the left-invariant vector fields,

A(ξ) =
∂

∂t
|t=0R

∗
exp(tξ) = ξL.

Similarly, the generating vector fields for the action by left multiplication are −ξR, and those
for the conjugation action are ξL − ξR.

Observe that if Φ: M1 →M2 is an equivariant map of G-manifolds, then the generating vector
fields for the action are Φ-related.
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Theorem 8.7. The generating vector fields of any G-action g → Ag define a g-action ξ → Aξ.

Proof. Write ξM := Aξ for the generating vector fields of a G-action on M . We have to show
that ξ 7→ ξM is a Lie algebra morphism. Note that the map

Φ: G×M →M, (a,m) 7→ a−1.m

is G-equivariant if we take the G-action on G×M to be g.(a,m) = (ag−1,m). Hence ξG×M ∼Φ

ξM . But ξG×M = ξL (viewed as vector fields on the product G×M), hence ξ 7→ ξG×M is a Lie
algebra morphism. It follows that

0 = [(ξ1)G×M , (ξ1)G×M ]− ([ξ1, ξ2])G×M ∼ [(ξ1)M , (ξ2)M ]− [ξ1, ξ2]M .

Since Φ is a surjective submersion (i.e. the differential dΦ: T (G ×M) → TM is surjective),
this shows that [(ξ1)M , (ξ2)M ]− [ξ1, ξ2]M = 0.

8.3 Integrating Lie algebra actions

Let us now consider the inverse problem: For a Lie group G with Lie algebra g, integrating a
given g-action to a G-action. The construction will use some facts about foliations.

Let M be a manifold. A k-dimensional distribution on M is a linear subspace R ⊂ X(M) of
the space of vector fields such that at any point m ∈ M , the subspace Em ⊂ TmM spanned
by all Xm, X ∈ R is of dimension k. The subspaces Em define a rank k vector bundle
E ⊂ TM with R = Γ(E), hence a distribution is equivalently given by this subbundle E.
An integral submanifold of the distribution R is a k-dimensional submanifold S such that all
X ∈ R are tangent to S. In terms of E, this means that TmS = Em for all m ∈ S. The
distribution is called integrable if for all m ∈M there exists an integral submanifold containing
m. In this case, there exists a maximal such submanifold, Lm. The decomposition of M into
maximal integral submanifolds is called a k-dimensional foliation of M , the maximal integral
submanifolds themselves are called the leaves of the foliation.

Not every distribution is integrable. Recall that if two vector fields are tangent to a submanifold,
then so is their Lie bracket. Hence, a necessary condition for integrability of a distribution is
that R is a Lie subalgebra. Frobenius’ theorem gives the converse:
Theorem 8.8 (Frobenius theorem). A rank k distibution R ⊂ X(M) is integrable if and only
if R is a Lie subalgebra.

The idea of proof is to show that if R is a Lie subalgebra, then R is spanned, near any m ∈M ,
by k commuting vector fields. one then uses the flow of these vector fields to construct integral
submanifold.

Given a Lie algebra of dimension k and an effective g-action on M (i.e. ξM = 0 implies ξ = 0),
one obtains an integrable rank k distribution R as the span (over C∞(M)) of the ξM ’s. We
use this to prove:
Theorem 8.9. Let G be a connected, simply connected Lie group with Lie algebra g. A Lie
algebra action g→ X(M), ξ 7→ ξM integrates to an action of G if and only if the vector fields
ξM are all complete.

Proof of the theorem. The idea of proof is as follows. Let M̂ = G × M , and pr1,pr2 the

projections to the two factors. A G-action on M defines a foliation of M̂ = G×M , with leafs
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the orbits of the diagonal action (where G acts on itself by left multiplication). Equivalently,

the leaves are the fibers of the map M̂ →M, (g,m) 7→ g−1.m. Hence they are indexed by the
elements of m, as follows

Lm = {(g, g.m)| g ∈ G}.
pr1 restricts to diffeomorphisms πm : Lm → G, and we recover the action as

g.m = pr2(π−1
m (g)).

Given a g-action, our plan is to construct the foliation from an integrable distribution.

Consider the Lie algebra action on M̂ = G×M , given by

ξ
M̂

= (−ξR, ξM ) ∈ X(G×M).

Note that the vector fields ξ
M̂

are complete, since ξM are by assumption complete: If Φξt is the
flow of ξM , the flow of ξ

M̂
= (−ξR, ξM ) is given by

Φ̂ξt = (Lexp(tξ),Φ
ξ
t ) ∈ Diff(G×M).

The action ξ 7→ ξ
M̂

is effective, hence it defines an integable dimG-dimensional distribution

R ⊂ X(M̂). Let Lm ↪→ G ×M be the unique leaf containing the point (e,m). Projection to
the first factor induces a smooth map πm : Lm → G.

The map πm is surjective: Given g ∈ G write g = gr . . . g1 where gi = exp(ξi). The path

Φ̂ξ1t (e,m), t ∈ [0, 1] lies in Lm, and has end point (g1,m1) where m1 = Φξ11 (m). Concatenation

with the path Φ̂ξ2t (g1,m1), t ∈ [0, 1] gives a (piecewise smooth) path from (m, e) to (g2g1,m2)

where m2 = Φξ21 Φξ11 (m). Proceeding in this manner, we obtain a piecewise smooth path in Lm
from (e,m) to (gr · · · g1,mr) = (g,mr). This shows π−1

m (g) 6= ∅.

For any (g, x) ∈ Lm the tangent map d(g,x)πm is an isomorphism. Hence πm : Lm → G is
a (surjective) covering map. Since G is simply connected by assumption, we conclude that
πm : Lm → G is a diffeomorphism. We now define Ag(m) = pr2(π−1

m (g)). Concretely, the
construction above shows that if g = exp(ξr) · · · exp(ξ1) then

Ag(m) = (Φξr1 ◦ · · · ◦ Φξ11 )(m).

From this description it is clear that Agh = Ag ◦ Ah.

Let us remark that, in general, one cannot drop the assumption that G is simply connected.
Consider for example G = SU(2), with su(2)-action ξ 7→ −ξR. This exponentiates to an action
of SU(2) by left multiplication. But su(2) ∼= so(3) as Lie algebras, and the action does not
exponentiate to an action of the group SO(3).

As an important special case, we obtain:
Theorem 8.10. Let H,G be Lie groups, with Lie algebras h → g. If H is connected and
simply connected, then any Lie algebra morphism φ : h → g integrates uniquely to a Lie group
morphism ψ : H → G.

Proof. Define an h-action on G by ξ 7→ −φ(ξ)R. Since the right-invariant vector fields are
complete, this action integrates to a Lie group action A : H → Diff(G). This action commutes
with the action of G by right multiplication. Hence, Ah(g) = ψ(h)g where ψ(h) = Ah(e). The
action property now shows ψ(h1)ψ(h2) = ψ(h1h2), so that ψ : H → G is a Lie group morphism
integrating φ.
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Corollary 8.11. Let G be a connected, simply connected Lie group, with Lie algebra g. Then
any g-representation on a finite-dimensional vector space V integrates to a G-representation on
V .

Proof. A g-representation on V is a Lie algebra morphism g→ End(V ), hence it integrates to
a Lie group morphism G→ End(V )×.

By a Lie subgroup of a Lie group H, we mean a Lie group G together with an injective Lie
group morphism G ↪→ H. That is, the inclusion map need not be an embedding.
Lemma 8.12. Let g ⊂ h be a Lie subalgebra of a finite-dimensional Lie algebra, and H a Lie
group integrating h. Then there exists a unique connected Lie subgroup G ⊂ H integrating g.

Proof. Consider the distribution on H spanned by the vector fields −ξR, ξ ∈ g. It is integrable,
hence it defines a foliation of H. The leaves of any foliation carry a unique manifold structure
such that the inclusion map is an immersion. Take G ⊂ H to be the leaf through e ∈ H, with
this manifold structure. Explicitly, G consists of products exp(ξr) · · · exp(ξ1) where ξi ∈ g.
From this description it follows that G is a Lie group.

By Ado’s theorem, any finite-dimensional Lie algebra g is isomorphic to a matrix Lie algebra.
We will skip the proof of this important (but relatively deep) result, since it involves a con-
siderable amount of structure theory of Lie algebras. Given such a presentation g ⊂ gl(n,R),
the Lemma gives a Lie subgroup G ⊂ GL(n,R) integrating g. Replacing G with its universal
covering, this proves:
Theorem 8.13 (Lie’s third theorem). For any finite-dimensional real Lie algebra g, there
exists a connected, simply connected Lie group G, unique up to isomorphism, having g as its
Lie algebra.

The book by Duistermaat-Kolk contains a different, more conceptual proof of Cartan’s theorem.
This new proof has found important generalizations to the integration of Lie algebroids. In
conjunction with the previous Theorem, Lie’s third theorem gives an equivalence between the
categories of finite-dimensional Lie algebras g and connected, simply-connected Lie groups G.

8.4 Proper actions

Let us quickly list some terminology for Lie group actions A : G→ Diff(M). For any m ∈ M ,
the set G.m := {(g,m) g ∈ G} is called the orbit of m. The space M/G = {G.m|m ∈ M} is
called the orbit space for the given action. It inherits a topology as a quotient space of M , but
can be a very singular space. The action A is called transitive if there is only one orbit, i.e.
M/G = pt. In this case, M is called a homogeneous space.

The subgroup Gm = {g ∈ G| g.m = m} is called the stabilizer of m. From the definition, it is
clear that stabilizer subgroups are closed subgroups of G, hence are embedded Lie subgroups.
In particular, the orbit G/Gm inherits a manifold structure. The inclusion of the orbit is
smooth relative to this manifold structure. For any g ∈ G, the stabilizers of a point m and of
its translate g.m are related by the adjoint action:

Gg.m = Adg(Gm).

The action is free if all stabilizers Gm are trivial. For instance, the actions of G by left or right
multiplication on G are both free, but the conjugation action is not. The action A is effective
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if ker(A) = {e}, i.e. Ag = idM implies g = e. For instance, the conjugation action of G on
itself is effective if and only if the center of G is trivial.

The action A is called proper if the action map G ×M → M is proper (i.e. pre-images of
compact sets are compact). For example, the left or right actions of G on itself are proper.
Note that for a proper G-action, the action of any closed subgroup H ⊂ G is still proper. Also,
for G compact any G-action is proper.

For a proper action, the stabilizer groups Gm are compact since Gm may be viewed as the
intersection of the closed subspace G×{m} ⊂ G×M with the preimage of {m} ∈M under the
action map. One can use this fact to construct slices for the action, i.e. Gm-invariant embedded
submanifolds S ⊂ M with m ∈ S such that G.S is an open neighborhood of the orbit G.m,
and such that gS ∩ S 6= ∅ ⇔ g ∈ Gm. Slices give models a neighborhood of G.m in the orbit
space, since (G.S)/G = S/Gm. In particular, if Gm is trivial, we see that a neighborhood of
G.m ⊂M/G is a manifold (modeled by S).
Theorem 8.14. For a free, proper action on a manifold M , the orbit space M/G inherits a
manifold structure such that the quotient map M → M/G is a smooth submersion. Given an
H-action on M that commutes with the G-action, the orbit space M/G inherits an H-action.
Example 8.15. Let H be a closed subgroup of G, acting on G by right multiplication. This
action is proper, hence G/H is a manifold. The action of G by left multiplication commutes
with the actuion of H, hence it descends to a smooth action on G/H.
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