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Abstract

Fast and slow inference are presented as trajectories existing on a high-dimensional
spectrum with their extrema bounding surfaces of a latent phase space. On one end,
an Autoencoder is trained on sensory observations and impresses latent encodings
onto a Discriminator-like energy manifold. On the other end, the latent space is
delimited by repeating the training process on sparse and low-dimensional sym-
bolic abstractions, producing an upper bounding manifold. An agent’s trajectory
corresponds to a flow of a symbolic dynamical system that minimizes the KL diver-
gence between the upper and lower boundaries, which minimizes the free-energy
of the system and can be learned from a series of initial value random walks.

Birkhoff’s theorem states that in an ergodic domain, the average of a function f over
an infinite number of flows converges to the continuous integral of the function over
the phase space. Defining f to be a function that minimizes the joint divergence
of the boundaries of a world model will produce a measure preserving ergodic
flow. Moreover, we can show that the time average can be derived from inference
using standard Bayesian expected loss while the space average can be derived from
energy-based inference methods. This reveals that the two methods of inference
become pointwise unified in ergodic domains, like language generation. This
in turn explains the effectiveness of modern deep learning methods that, despite
being restricted to surface level System 1 thinking, are able to imitate System 2
thinking. It is possible for a model to learn how to construct and maintain a minimal
ergodic latent space even when sampling from sparse non-ergodic observations.
This pointwise equivalence enables an agent to fluidly switch between systems of
thinking and improve inference performance.

1 Systems of Thinking

In Thinking, Fast and Slow (Kahneman, 2011), cognitive processes are categorized into two modes.
In System 1, thought processes are fast, intuitive, unconscious, and habitual. In System 2, thought
processes become slower, logical, conscious, algorithmic, and may involve planning or reasoning.
It can be claimed that the system of fast thought closely corresponds to many state-of-the-art deep
learning approaches (Bengio, 2019). These methods aim to discover underlying distributions of data
in the form of a normalized probability density by training on many examples while minimizing a
cost function. In doing so, a model is able to quickly perform inference when being tested on unseen
examples. System 2 thinking instead embodies the future aspirations of models that require very few
examples and can learn in a self-supervised manner. Though the model may perform inference slowly,
this method of thinking appears to be a necessary aspect in developing an artificial general intelligence
(AGI) that matches and exceeds our own abilities. It’s possible to draw a comparison between System
2 thinking and energy-based models (EBM) which aim to capture dependencies between variables
by associating a scalar energy to each configuration of the variables (LeCunn, 2006). Learning is
often faster than with a standard loss functions and consists in finding an energy function where
observed configurations of the variables are given lower energies than unobserved ones. Inference is
often slower and involves searching the energy function using optimization methods like stochastic
gradient descent to find compatible variables that minimize the energy function.



2 Birkhoff’s Ergodic Theorem

A dynamical system, usually written as the tuple (T,X), is described by a transformation that maps
a phase space onto itself, T : X → X . The set of points attained from repeated applications of the
transformation from some starting point is known as its forward orbit or trajectory. ergodicity can be
viewed as an indecomposability condition and is concerned with how a typical orbit of a dynamical
system is distributed throughout the phase space with these qualitative distributional properties being
expressed in terms of measure theory. Measure preserving means that P (T−1(A)) = P (A) for all
measurable sets A ∈ A. ergodic means that T (A) = A implies P (A) = 0 or P (A) = 1 for all
A ∈ A.

Birkhoff’s Ergodic Theorem states that if a mapping is ergodic, as the number of finite averages
taken along any of its orbits increases to infinity (the time average), this value will converge to the
continuous integral (the space average). That is, a finite average sampling of points of any orbit will
be as accurate as a continuous average integral over the entire state space. Formally, let (X,B, µ)
be a probability space and let T : X 7→ X be a measure-preserving transformation (on a σ-finite
measure space µ(X) <∞). If f is any integrable function and T is ergodic, then the time average is
constant in measure µ almost everywhere and is equivalent to the space average,
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Corollary (Point-wise Ergodic Theorem):
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f(T i(x)) = E(f)

Working backwards from the expected value, we can derive the standard Bayesian training method of
averaging over a large number of training examples. We consider x ∈ X to be a sampled observation,
f is our cost minimization function, and T represents a transformation attained from a trained model
that encodes and predicts a future state. As the number of training orbits increases to infinity, the
encoding and prediction mechanisms converge to the continuous integration over the space and the
expected output of the function in the point-wise interpretation.

Energies can be thought of as being unnormalized negative log probabilities. That is, we may
use the Gibbs-Boltzmann distribution to convert an energy function to its equivalent probabilistic
representation after normalization, i.e. P (y | x). Recall, marginalisation is a method that sums over
the possible values of one variable to determine the marginal contribution of another. P (y | x) is just
an application of the Gibbs-Boltzmann formula with latent variables z being marginalized implicitly
through integration, i.e. P (y | x) =

∫
z
P (y, z|x). Then,

P (y | x) =

∫
z

exp(−βE(x, y, z))∫
y

∫
z

exp(−βE(x, y, z))

The derivation introduces a β term which is the inverse of temperature T , so as β → ∞ the
temperature goes to zero. β is a positive constant that needs to be calibrated to fit the model. A larger
β value produces a more fluctuate model while a smaller β gives a smoother model. When β →∞,
we see that y̌ = argminyE(x, y). So we can redefine our energy function as an equivalent function
using Fβ ,

F∞(x, y) = argminzE(x, y, z)

Fβ(x, y) = − 1

β
log

∫
z

exp(−βE(x, y, z)).
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In physics, Fβ is known as the free energy and E is the energy. If we have a latent variable model
and want to eliminate the latent variable z in a probabilistically correct way, we just need to redefine
the energy function in terms of Fβ ,

P (y | x) =
exp(−βFβ(x, y, z))∫
y

exp(−βFβ(x, y, z))
.

3 Ergodic World Models

We see that in ergodic domains, an averaging of an increasingly large number of examples will
become increasingly close to the average behaviour of the underlying causative process depicted by
the space average integral. We can claim an equivalence between the time averages of a summation
with the first system of thinking and the space average of an integral with the second system of
thinking. It can then be claimed that the dichotomy of the systems of thought become increasingly
unified in ergodic domains.

In environments that contain non-ergodic domains, a learning agent can establish an internal ergodic
world model by actively selecting which observations are sampled and manipulating how these
observations are encoded and stored. To maintain ergodic averages, only a local stablility is necessary,
making this model biologically plausible. An ergodic world model allows the agent to attain a
pointwise fluidity between System 1 and System 2 inference capabilities which ultimately improves
its decision-making speed and quality in unpredictable environments. When applied to the energy-
based dynamical system described in a previous paper, the latent space explored during the dream
phase of training can be manipulated in order to generate ergodic measure preserving flows despite
the external world explored during its waking test phase not necessarily being ergodic. Recall, the
flows are attained by minimizing the free-energy of the system, represented as a Kullback–Leibler
divergence or relative entropy of bounding energy manifolds.

It follows that the latent trajectories can be interpreted with symbolic dynamics. A symbolic orbit is a
sequence of symbols corresponding to the successive partition elements visited by the point in its
orbit is typically be represented as a Bernoulli Scheme. Instead, we use an Autoencoder to learn an
encoding that will partition the space while maintaining ergodicity. This means the learned trajectories
on the discrete space will on average be consistent with those in dense continuous space, which
reduces the memory and computation of what would otherwise involve solving high dimensional
differential equations on a continuous domain. The learned symbolic encodings of the Autoencoder
are closely correlated with the form of the latent world model itself.

3.1 Ornstein Isomorphism Theorem

The Ornstein isomorphism theorem is a deep result for ergodic theory. It states that if two different
Bernoulli schemes have the same Kolmogorov entropy, then they are isomorphic. It reveals that many
systems previously believed to be unrelated are in fact isomorphic; these include all finite stationary
stochastic processes, including Markov chains and subshifts of finite type, Anosov flows and Sinai’s
billiards, ergodic automorphisms of the n-torus (uniform hyperbolic dynamics), and the continued
fraction transform.
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