
Differential Geometry

Contents

1 Prerequisites 2
1.1 Topology of Manifolds Intro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Equivalence Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 On relation to Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Manifolds 4
2.1 Atlases and Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Definition of manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Examples of manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 N-spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 Products and n-torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.3 Real projective spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.4 Complex projective spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.5 Grassmannians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.6 Complex Grassmannians . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Oriented manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Open subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Compact subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Smooth Maps 11
3.1 Smooth functions on manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Smooth maps between manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Diffeomorphisms of manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Examples of smooth maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4.1 Products, diagonal maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.2 The diffeomorphism RP 1 ∼= S1 . . . . . . . . . . . . . . . . . . . . . . . 13
3.4.3 The diffeomorphism CP 1 ∼= S2 . . . . . . . . . . . . . . . . . . . . . . . 13
3.4.4 Maps to and from projective space . . . . . . . . . . . . . . . . . . . . . 13
3.4.5 The Hopf fibration, a.k.a. the quotient map S2n+1 → CPn . . . . . . . 13

3.5 Submanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6 Smooth maps of maximal rank . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6.1 The rank of a smooth map . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6.2 Local diffeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6.3 Level sets, submersions . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6.4 Example: The Steiner surface . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6.5 Immersions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 The Tangent Bundle 19
4.1 Tangent map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Definition of the tangent map, basic properties . . . . . . . . . . . . . . 20
4.1.2 Coordinate description of the tangent map . . . . . . . . . . . . . . . . 21

4.2 Tangent spaces of submanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.1 Example: Steiner’s surface revisited . . . . . . . . . . . . . . . . . . . . 22
4.2.2 The tangent bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1



CONTENTS 2

5 Vector Fields 23
5.1 Vector fields as derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Vector fields as sections of the tangent bundle . . . . . . . . . . . . . . . . . . . 23
5.3 Lie brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4 Related vector fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.5 Flows of vector fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.6 Geometric interpretation of the Lie bracket . . . . . . . . . . . . . . . . . . . . 27
5.7 Frobenius theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Differential Forms 29
6.1 Review: Differential forms on Rm . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Dual spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3 Cotangent spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.4 1-forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.5 Pull-backs of function and 1-forms . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.6 Integration of 1-forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.7 2-forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.8 k-forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.8.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.8.2 Wedge product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.8.3 Exterior differential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.9 Lie derivatives and contractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.9.1 Pull-backs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.9.2 Integration of differential forms . . . . . . . . . . . . . . . . . . . . . . . 38
6.9.3 Integration over oriented submanifolds . . . . . . . . . . . . . . . . . . . 38
6.9.4 Stokes’ theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.9.5 Volume forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7 De Rham Cohomology 41

8 Overview of Riemannian Geometry 41
8.1 Covariant derivative and curvature . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.2 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

9 Lie Groups 44



3

1 Prerequisites

1.1 Topology of Manifolds Intro

The fundamental objects of study in differential geometry are manifolds. Roughly, an n-
dimensional manifold is a mathematical object that “locally” looks like Rn. Manifolds in
euclidean space are described with a regular level set, S = f−1(a) which defines a smooth
hypersurface S ⊆ Rn. For example, the n-dimensional sphere described by:

Sn = {(x0, . . . , xn) ∈ Rn+1|(x0)2 + · · ·+ (xn)2 = 1}.

Another example is the 2-Torus, T 2. Given real numbers r,R with 0 < r < R, take a circle of
radius r in the x− z plane, with center at (R, 0), and rotate about the z-axis:

T 2 = {(x, y, z)|(
√
x2 + y2 −R)2 + z2 + r}

The sphere, the torus, the double torus, triple torus, and so on are orientable surfaces, which
essentially means that they have two sides which you might paint in two different colors. It
turns out that these are all orientable surfaces, if we consider the surfaces intrinsically and only
consider surfaces that are compact in the sense that they don’t go off to infinity and do not
have a boundary (thus excluding a cylinder, for example).

Not all surfaces can be realized as ’embedded’ in R3; for non-orientable surfaces one needs to
allow for self-intersections. This type of realization is referred to as an immersion: We don’t
allow edges or corners, but we do allow that different parts of the surface pass through each
other. An example is the Klein bottle, which is not possible to represent as a regular level set
f−1(0) of a function f since any suface has one side where f is positive and another side where
f is negative.

The projective plane or projective space is denoted RP 2 and is defined as the set of all lines
(i.e., 1-dimensional subspaces) in R3. we can also think of RP 2 as the set of antipodal (i.e.,
opposite) points on S2. Splitting the points into those with distance < ε from the equator and
those ≥ ε produces a Mobius strip and a two-dimensional disc. Generating a smooth curve by
gluing the boundary of a Mobius strip to the boundary of a disk is depicted in what’s known
as Boy’s surface.

Another operation for surfaces, generalizing the procedure of ‘attaching handles’, is the con-
nected sum Given two surfaces σ1 and σ2, remove small disks around given points p1 ∈ σ1 and
p2 ∈ σ2, to create two surfaces with boundary circles. Then glue-in a cylinder connecting the
two boundary circles, without creating edges. The resulting surface is denoted σ1#σ2.

It turns out that all closed, connected surfaces are obtained from either the 2-sphere S2, the
Klein bottle, or RP 2, by attaching handles with the connected sum.

1.2 Algebras

An algebra (over the field R of real numbers) is a vector space A , together with a multiplication
(product) A ×A → A , (a, b) 7→ ab such that

1. The multiplication is associative.
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2. The multiplication map is linear in both arguments.

The algebra is called commutative if ab = ba for all a, b ∈ A. A unital algebra is an algebra A
with a distinguished element 1A ∈ A (called the unit), with 1A a = a = a1A for all a ∈ A .

One can also consider non-associative product operations on vector spaces, most importantly
one has the class of Lie algebras. Some examples include: The space of complex numbers which
is a unital, commutative algebra. H ∼= R4 of quaternions which is a unital, non-commutative
algebra. The space of n × n matricies which is a noncommutative unital algebra. Given a
topological space X, one has the algebra C(X) of continuous R-valued functions.

A homomorphism of algebras φ : A → A ′ is a linear map preserving products: φ(ab) =
φ(a)φ(b). It is called an isomorphism of algebras if φ is invertible. For the special case A ′ = A
, these are also called algebra automorphisms of A . Note that the algebra automorphisms form
a group under composition.

1.3 Derivations

Definition 1.1. A derivation of an algebra A is a linear map D : A → A satisfying the
product rule

D(a1a2) = D(a1)a2 + a1D(a2).

.

If dimA <∞, a derivation is an infinitesimal automorphism of an algebra.

Any given x ∈ A defines a derivationD(a) = [x, a] := xa−ax. These are called inner derivations.
If A is commutative (for example A = C∞(M)) the inner derivations are all trivial. At the
other extreme, for the matrix algebra A = MatR(n), one may show that every derivation is
inner.

If A is a unital algebra, with unit 1A, then D(1A) = 0 for all derivations D.

Given two derivations D1, D2 of an algebra A, their commutator [D1, D2] = D1D2 −D2D1 is
again a derivation.

If the algebra A is commutative, then the space of derivations is a ’left-module over A’. That
is, if D is a derivation and x ∈ A then a 7→ (xD)(a) := xD(a) is again a derivation

1.4 Equivalence Relations

[Omitted]

1.5 On relation to Physics

In Albert Einstein’s theory of General Relativity from 1916, space-time was regarded as a 4-
dimensional ’curved’ manifold with no distinguished coordinates. A local observer may want
to introduce local xyz coordinates to perform measurements, but all physically meaningful
quantities must admit formulations that are coordinate-free. At the same time, it would seem
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unnatural to try to embed the 4-dimensional curved space-time continuum into some higher-
dimensional flat space, in the absence of any physical significance for the additional dimen-
sions. Some years later, gauge theory once again emphasized coordinate-free formulations, and
provided physics motivations for more elaborate constructions such as fiber bundles and con-
nections. There are many subbranches of differential geometry, for example complex geometry,
Riemannian geometry, or symplectic geometry, which further subdivide into sub-sub-branches.

2 Manifolds

2.1 Atlases and Charts

Manifolds will initially be described in intrinsic or manifestly coordinate-free terms. The basic
feature of manifolds is the existence of ’local coordinates’. The transition from one set of
coordinates to another should be smooth.

Definition 2.1. (Smoothness and diffeomophisms)

Let U ⊆ Rm and V ⊆ Rn be open subsets. A map F : U → V is called smooth if it is
infinitely differentiable. The set of smooth functions from U to V is denoted C∞(U, V ).
The map F is called a diffeomorphism from U to V if it is invertible, and the inverse map
F−1 : V → U is again smooth.

Definition 2.2. (Jacobian matrix)

For a smooth map F ∈ C∞(U, V ) between open subsets U ⊆ Rm and V ⊆ Rn, and any
x ∈ U , one defines the Jacobian matrix DF (x) to be the n×m matrix of partial derivatives,

(DF (x))ij =
∂F i

∂xj

Its determinant is called the Jacobian matrix of F at x.

Theorem 2.3. (Inverse function theorem)

The inverse function theorem states that F is a diffeomorphism if and only if it is invertible,
and for all x ∈ U , the Jacobian matrix DF (x) is invertible. This means one does not actually
have to check smoothness of the inverse map.

Definition 2.4. (Charts)

Let M be a set.

1. An m-dimensional (coordinate) chart (U, φ) on M is a subset U ⊆M together with
a map φ : U → Rm , such that φ(U) ⊆ Rm is open and φ is a bijection from U to
φ(U).

2. Two charts (U, φ) and (V, ψ) are called compatible if the subsets φ(U ∩ V ) and
ψ(U ∩ V ) are open, and the transition map

ψ ◦ φ−1 = φ(U ∩ V )→ ψ(U ∩ V )

is a diffeomorphism known as a change of coordinates. As a special case, charts with
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U ∩ V = ∅ are always compatible.

Definition 2.5. (Atlas)

Let M be a set. An m-dimensional atlas on M is a collection of coordinate charts A =
{(Uα, φα)} such that,

1. The Uα cover all of M , i.e.
⋃
α Uα = M .

2. For all indicies α, β, the charts (Uα, φα) and (Uβ , φβ) are compatible.

Definition 2.6. (Sterographic projection)

Regard R2 as the coordinate subspace of R3 on which z = 0 runs through the center of the
sphere; the “equator” is the intersection of the sphere with this plane. Let N = (0, 0, 1)
be the “north pole”, and let M be the rest of the sphere. For any point P on M , there
is a unique line through N and P , and this line intersects the plane z = 0 in exactly one
point P ′. Define the stereographic projection of P to be this point P ′ in the plane.

Example 2.7. (Atlas on the 2-sphere)

Let S2 ⊆ R3 be the unit sphere. Let n = (0, 0, 1) be the north pole, and s = (0, 0,−1) be the
south pole, and define an atlas with two charts (U+, φ+) and (U−, φ−), where

U+ = S2 − s, U− = S2 − n

and the stereographic projection from the south pole is given by,

φ+ : U+ → R2, p 7→ φ+(p)

φ+(x, y, z) =

(
x

1 + z
,

y

1 + z

)
and the stereographic projection from the north pole is given by,

φ− : U+ → R2, p 7→ φ−(p)

φ−(x, y, z) =

(
x

1− z
,

y

1− z

)
.

The transition map on the overlap of the two charts is,

φ− ◦ φ−1+ (u, v) =

(
u

u2 + v2
,

v

u2 + v2

)
.

The 2-sphere with the atlas given by stereographic projections onto the x − y-plane, and the
2-sphere with the atlas given by stereographic projections onto the y − z-plane, should be one
and the same manifold S2. To resolve this, we will use the following notion of compatibility.

Definition 2.8. (Compatibility)

Suppose A = {(Uα, φα)} is an m-dimensional atlas on M , and let (U, φ) be another chart.
Then (U, φ) is said to be compatible with A if it is compatible with all charts (Uα, φα) of
A

Note that (U, φ) is compatible with the atlas A = {(Uα, φα)} if and only if the union A ∪(U, φ)
is again an atlas on M . This suggests defining a bigger atlas, by using all charts that are
compatible with the given atlas with the following lemma.
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Lemma 2.9. Let A = {(Uα, φα)} be a given atlas on the set M . If two charts (U, φ), (V, ψ)
are compatible with A , then they are also compatible with each other.
Theorem 2.10. Given an atlas A = {(Uα, φα)} on M , let Ã be the collection of all charts
(U, φ) that are compatible with A . Then Ã is itself an atlas on M , containing A . In fact, Ã
is the largest atlas containing A .

Definition 2.11. (Maximal and equivalent atlases)

An atlas A is called maximal if it is not properly contained in any larger atlas. Given
an arbitrary atlas A , one calls Ã the maximal atlas determined by A . Two atlases are
called equivalent if every chart of one atlas is compatible with every chart in the other
atlas. Any maximal atlas determines an equivalence class of atlases, and vice versa.

2.2 Definition of manifold

Definition 2.12. An m-dimensional manifold is a set M , together with a maximal atlas
A = {(Uα, φα)} with the following properties:

1. (Countability condition) M is covered by countably many coordinate charts in
A. That is, there are indices α1, α2, . . . with

M =
⋃
i

Uαi .

2. (Hausdorff condition) For any two distinct points p, q ∈ M there are coordinate
charts (Uα, φα) and (Uβ , φβ) in A such that p ∈ Uα, q ∈ Uβ , with

Uα ∩ Uβ = ∅.

The charts (U, φ) ∈ A are called (coordinate) charts on the manifold M . The countability
condition is used for various arguments involving a proof by induction. The Hausdorff condition
rules out some strange examples that don’t quite fit the idea of a space that is locally like Rn.
Lemma 2.13. Let M be a set with a maximal atlas A = {(Uα, φα)}, and suppose p, q ∈ M
are distinct points contained in a single coordinate chart (U, φ) ∈ A . Then we can find indices
α, β such that p ∈ Uα, q ∈ Uβ, with Uα ∩ Uβ = ∅.

2.3 Examples of manifolds

2.3.1 N-spheres

The construction of an atlas for the 2-sphere S2, by stereographic projection, also works for
the n-sphere

Sn = {(x0, . . . , xn) ∈ Rn+1|(x0)2 + · · ·+ (xn)2 = 1}.

Let U± be the subsets obtained by removing (±1, 0, . . . , 0). Stereographic projection defines

bijections φ± : U± → Rn, where φ±(x0, x1, · · · , xn) = (u1, · · · , un) with ui =
xj

1± x0
.
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Writing u = (u1, . . . , un), the transition functions are given by,

(φ− ◦ φ−1+ )(u) =
u

||u||2
.

2.3.2 Products and n-torus

Given manifolds M,M ′ of dimensions m,m′, with atlases {(Uα, φα)} and {(Uβ , φβ)}, the carte-
sian product M×M ′ is a manifold of dimension m+m′. An atlas is given by the product charts
Uα × Uβ with the product maps φα × φ′β : (x, x′) 7→ (φα(x), φ′β(x′)). For example, the 2-torus

T 2 = S1×S1 becomes a manifold in this way, and likewise for the n-torus, Tn = S1× · · ·×S1.

2.3.3 Real projective spaces

The n-dimensional projective space RPn, is the set of all lines l ⊆ Rn+1. It may also be
regarded as a quotient space,

RPn = (Rn+1 \ {0})/ ∼

RPn has a standard atlas, A = (U0, φ0), . . . , (U)n, φn) defined as follows. For j = 0, . . . , n, let
Uj = {(x0 : · · · : xn) ∈ RPn|xj 6= 0} be the set for which the j-th coordinate is non-zero, and
put

φj : Uj → Rn, (x0 : · · · : xn) 7→
(
x0

xj
, . . . ,

xn

xj

)
.

Geometrically, viewing RPn as the set of lines in Rn+1, the subset Uj ⊆ RPn consists of those
lines l which intersect the affine hyperplane Hj = {x ∈ Rn+1|xj = 1} and the map φj takes
such a line l to its unique point of intersection l ∩Hj , followed by the identification Hj

∼= Rn
(dropping the coordinate xj = 1). In low dimensions, we have that RP 0 is just a point, while
RP 1is a circle.

2.3.4 Complex projective spaces

Similar to the real projective space, one can define a complex projective space CPn as the set
of complex 1-dimensional subspaces of Cn+1.

CPn = (Cn+1 \ {0})/ ∼

Alternatively, letting S2n+1 ⊆ Cn+1 = R2n+2 be the ’unit sphere’ consisting of complex vectors
of length ||z|| = 1, we have

CPn = S2n+1/ ∼

One defines charts (Uj , φj) similar to those for the real projective space:

Uj = {(z0 : · · · : zn)|zj 6= 0}

φj : Uj → C2n, (z0 : · · · : zn) 7→
(
z0

zj
, . . . ,

zn

zj

)
.

The transition maps between charts are given by similar formulas as for RPn (just replace
x with z). The transition maps are not only smooth but even holomorphic, making CPn an
example of a complex manifold (of complex dimension n).
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2.3.5 Grassmannians

The set Gr(k, n) of all k-dimensional subspaces of Rn is called the Grassmannian of k-planes in
Rn. As a special case, Gr(1, n) = RPn−1. We will show that for general k, the Grassmannian
is a manifold of dimension dim(Gr(k, n)) = k(n− k). [Omitted]

2.3.6 Complex Grassmannians

Similar to the case of projective spaces, one can also consider the complex Grassmannian
GrC(k, n) of complex k-dimensional subspaces of Cn . It is a manifold of dimension 2k(n− k),
which can also be regarded as a complex manifold of complex dimension k(n− k).

2.4 Oriented manifolds

The notion of an orientation on a manifold will become crucial later, since integration of dif-
ferential forms over manifolds is only defined if the manifold is oriented.

Definition 2.14. (Oriented atlas and manfold)

The compatibility condition between charts (U, φ), (V, ψ) on a set M is that the change
of coordinates map φ ◦ ψ−1) is a diffeomorphism. In particular, the Jacobian matrix
D(φ ◦ ψ−1)) of the transition map is invertible, and hence has non-zero determinant. If
the determinant is > 0 everywhere, then we say (U, φ), (V, ψ) are oriented-compatible. An
oriented atlas on M is an atlas such that any two of its charts are oriented-compatible; a
maximal oriented atlas is one that contains every chart that is oriented-compatible with all
charts in this atlas. An oriented manifold is a set with a maximal oriented atlas, satisfying
the Hausdorff and countability conditions. A manifold is called orientable if it admits an
oriented atlas.

The spheres Sn are orientable. To see this, consider the atlas with the two charts given by
stereographic projections. The Jacobian matrix D(φ−, ψ

−1)+)(u) has determinant of −||u||−2n
which is not an oriented atlas. To remedy this, simply compose one of the charts, with the map
(u1, u2, . . . , un) 7→ (−u1, u2, . . . , un); then with the resulting new coordinate map φ̃− the atlas
(U+, φ+), (U−, φ̃−) will be an oriented atlas.

One can show that the real projective space RPn is orientable if and only if n is odd or n = 0.
More generally, the Grassmannians space Gr(k, n) is orientable if and only if n is even or n = 1.
The complex projective spaces CPn and complex Grassmannians GrC(k, n) are all orientable.
This follows because the transition maps for their standard charts, as maps between open
subsets of Cm, are actually complex-holomorphic, and this implies that as real maps, their
Jacobian has positive determinant.

2.5 Open subsets

Let M be a set equipped with an m-dimensional maximal atlas A = {(Uα, φα)}.

Definition 2.15. (Open subset)
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A subset U ⊆ M is open if and only if for all charts (Uα, φα) ∈ A the set φα(U ∩ Uα) is
open.

Proposition 2.15.1. Given U ⊆ M , let B ⊆ A be any collection of charts whose union
contains U . Then U is open if and only if for all charts (Uβ , φβ) from B, the sets φβ(U ∩Uβ)
are open.

This means that to check that a subset U is open, it is not actually necessary to verify this
condition for all charts. As the above proposition shows, it is enough to check for any collection
of charts whose union contains U . In particular, we may take A to be any atlas, not necessarily
a maximal atlas.

If A is an atlas on M , and U ⊆M is open, then U inherits an atlas by restriction:

A = {(U ∩ Uα, φα|U∩Uα)}

Proposition 2.15.2. An open subset of a manifold is again a manifold.
Proposition 2.15.3. Let M be a set with an m-dimensional maximal atlas. The collection of
all open subsets of M has the following properties

1. ∅,M are open.

2. The intersection U ∩ U ′ of any two open sets U,U ′ is again open.

3. The union ∩iUi of an arbitrary collection Ui, i ∈ I of open sets is again open.

These properties mean, by definition, that the collection of open subsets of M define a topology
on M . This allows us to adopt various notions from topology:

1. A subset A ⊆M is called closed if its complement M \A is open.

2. M is called connected if the only subsets A ⊆M that are both closed and open are A = ∅
and A = M .

3. If U is an open subset and p ∈ U , then U is called an open neighborhood of p. More
generally, if A ⊆ U is a subset contained in M , then U is called an open neighborhood of
A.

The Hausdorff condition in the definition of manifolds can now be restated as the condition
that any two distinct points p, q ∈ M have disjoint open neighborhoods. (It is not necessary
to take them to be domains of coordinate charts.) It is immediate from the definition that
domains of coordinate charts are open. Indeed, this gives an alternative way of defining the
open sets.

2.6 Compact subsets

Another important concept from topology that we will need is the notion of compactness.

Definition 2.16. (Compactness)

A subset A ⊆ Rm is compact if it has the following property: For every collection Uα of
open subsets of Rm whose union contains A, the set A is already covered by finitely many
subsets from that collection.

In short, A ⊆M is compact if every open cover admits a finite subcover.
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Theorem 2.17. (Heine-Borel)

A subset A ⊆ Rm is compact if and only if it is closed and bounded.
Proposition 2.17.1. If A ⊆ M is contained in the domain of a coordinate chart (U, φ), then
A is compact in M if and only if φ(A) is compact in Rn.

The proposition is useful, since we can check compactness of φ(A) by using the Heine-Borel
criterion. For more general subsets of M , we can often decide compactness by combining this
result with the following:
Proposition 2.17.2. If A1, . . . , Ak ⊆ M is a finite collection of compact subsets, then their
union A = A1 ∩ · · · ∩Ak is again compact.

A simpler way of verifying compactness is by showing that they are closed and bounded subsets
of RN for a suitable N .
Proposition 2.17.3. Let M be a set with a maximal atlas. If A ⊆M is compact, and C ⊆M
is closed, then A ∩ C is compact.
Proposition 2.17.4. If M is a manifold, then every compact subset A ⊆M is closed.
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3 Smooth Maps

3.1 Smooth functions on manifolds

The notion of smooth functions on open subsets of Euclidean spaces carries over to manifolds:
A function is smooth if its expression in local coordinates is smooth,

Definition 3.1. (Smoothness)

A function f : M → R on a manifold M is called smooth if for all charts (U, φ) the function

f ◦ φ−1 : φ(U)→ R

is smooth. The set of smooth functions on M is denoted C∞(M).

Since transition maps are diffeomorphisms, it suffices to check the condition for the charts from
any given atlas which need not be the maximal atlas.

Given an open subset U ⊆M , we say that a function f is smooth on U if its restriction f |U is
smooth. (Here we are using that U itself is a manifold.) Given p ∈M , we say that f is smooth
at p if it is smooth on some open neighborhood of p.
Lemma 3.2. Smooth functions f ∈ C∞(M) are continuous: For every open subset J ⊆ R, the
pre-image f−1(J) ⊆M is open.

From the properties of smooth functions on Rm, one immediately gets the following properties
of smooth functions on manifolds M :

1. If f, g ∈ C∞(M) and λ, µ ∈ R, then λf + µg ∈ C∞(M).

2. If f, g ∈ C∞(M), then fg ∈ C∞(M).

3. 1 ∈ C∞(M) (where 1 denotes the constant function p 7→ 1)

These properties say that C∞(M) is an algebra with unit 1.
Proposition 3.2.1. Suppose M is any set with a maximal atlas, and p 6= q are two points in
M . Then the following are equivalent:

1. There are open subsets U, V ⊆M with p ∈ U, q ∈ V,U ∩ V = ∅

2. There exists f ∈ C∞(M) with f(p) 6= f(q).
Corollary 3.2.1. (Criterion for Haudorff condition)

A set M with an atlas satisfies the Hausdorff condition if and only if for any two distinct points
p, q ∈ M , there exists a smooth function f ∈ C∞(M) with f(p) 6= f(q). In particular, if there
exists a smooth injective map F : M → RN , then M is Hausdorff.

3.2 Smooth maps between manifolds

Definition 3.3. A map F : M → N between manifolds is smooth at p ∈ M if there are
coordinate charts (U, φ) around p and (V, ψ) around F (p) such that F (U) ⊆ V and such
that the composition

ψ ◦ F ◦ φ−1 : φ(U)→ ψ(V )
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is smooth. The function F is called a smooth map from M to N if it is smooth at all
p ∈M .

The condition for smoothness at p does not depend on the choice of charts. To check smoothness
of F , it suffices to take any atlas of M with the property that F (Uα) ⊆ Vα and then check
smoothness of the maps. Smooth maps M → R are the same thing as smooth functions on M ,
C∞(M,R) = C∞(M).
Proposition 3.3.1. Suppose F1 : M1 → M2 and F2 : M2 → M3 are smooth maps. Then the
composition F2 ◦ F1 : M1 →M3 is smooth.

3.3 Diffeomorphisms of manifolds

Definition 3.4. (Diffeomorphic manifolds)

A smooth map F : M → N is called a diffeomorphism if it is invertible, with a smooth
inverse F−1 : N → M . Manifolds M,N are called diffeomorphic if there exists a diffeo-
morphism from M to N .

In other words, a diffeomorphism of manifolds is a bijection of the underlying sets that identifies
the maximal atlases of the manifolds. Manifolds that are diffeomorphic are therefore considered
’the same manifolds’.

Definition 3.5. (Homeomorphic manifolds) A continuous map F : M → N is called
a homeomorphism if it is invertible, with a continuous inverse. Manifolds M,N are called
homeomorphic if there exists a homeomorphism from M to N .

Manifolds that are homeomorphic are considered ’the same topologically’. Since every smooth
map is continuous, every diffeomorphism is a homeomorphism.
Example 3.6. The standard example of a homeomorphism of smooth manifolds that is not a
diffeomorphism is the map R→ R, x 7→ x3. Indeed, this map is smooth and invertible, but the
inverse map y 7→ y

1
3 is not smooth.

It is quite possible for two manifolds to be homeomorphic but not diffeomorphic, these are
known as exotic manifolds. An exotic sphere is homeomorphic but not diffeomorphic to the
standard Euclidean n-sphere. It is known that there are no exotic manifold structures on Rn
for Rn with n 6= 4, where there are uncountably many such.

3.4 Examples of smooth maps

3.4.1 Products, diagonal maps

1. If M,N are manifolds, then the projection maps are smooth. Take product charts Uα×Vβ .

pTM : M ×N →M, pTN : M ×N → N

2. The diagonal inclusion is smooth. In a coordinate chart around a point, the map is the
restriction to a subset of the diagonal inclusion.

∆M : M →M ×M
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3. Suppose F : M → N and F ′ : M ′ → N ′ are smooth maps. Then the direct product is
smooth.

F × F ′ : M ×M ′ → N ×N ′

3.4.2 The diffeomorphism RP 1 ∼= S1

We have seen that RP 1 ∼= S1. To obtain a diffeomorphism, we construct a bijection between
the standard atlases of both of the manifolds described previously

3.4.3 The diffeomorphism CP 1 ∼= S2

By a similar reasoning, we find CP 1 ∼= S2. For S2 we use the atlas given by stereographic
projection. Regarding u as a complex number the normis just the absolute value of u, and the
transition map becomes u 7→ 1

u . Note that it is not quite the same as the transition map for
the standard atlas of CP 1, which is given by u 7→ u−1. We obtain a unique diffeomorphism
such that φ+ ◦ F ◦ φ−10 is the identity and φ− ◦ F ◦ φ−11 is complex conjugation

3.4.4 Maps to and from projective space

The quotient map π is smooth, as one verifies by checking in the standard atlas for RPn.

π : Rn+1 \ {0} → RPN , x = (x0, . . . , xn) 7→ (x0, . . . , xn)

Given a map F : RPn → N to a manifold N , let F̃ = F ◦π : Rn+1 \{0} → N be its composition
with the projection map π : Rn+1 \ {0} → RPn. That is, F̃ (x0, . . . , xn) = F (x0 : · · · : xn).

We claim that the map F is smooth if and only the corresponding map F̃ is smooth. One
direction is clear: If F is smooth, then F̃ = F ◦ π is a composition of smooth maps. For the
other direction, assuming that F̃ is smooth, note that for the standard chart (Uj , φj), and the
maps

(F ◦ φ−1j )(u1, . . . , un) = F̃ (u1, . . . , ui, 1, ui+1, . . . , un),

are smooth. An analogous argument applies to the complex projective space CPn , taking the
xi to be complex numbers zi

3.4.5 The Hopf fibration, a.k.a. the quotient map S2n+1 → CPn

As mentioned above, quotient map q : Cn+1 \ {0} → CPn is smooth. Since any class [z] =
(z0 : · · · : zn) has a representative with |z0|2 + · · · + |zn|2 = 1, and |zi|2 = (xi)2 + (yi)2 for
zi = xi +

√
−1yi, we may also regard CPn as a set of equivalence classes in the unit sphere

S2n+1 ⊆ R2n+2 = Cn+1. The resulting quotient map

π : S2n+1 → CPn

is again smooth, because it can be written as a composition of two smooth maps π = q ◦ τ
where τ : S2n+1 7→ R2n+2 \ {0} = Cn+1 \ {0} is the inclusion map.

For any p ∈ CPn , the corresponding fiber π−1(p) ⊂ S2n+1 is diffeomorphic to a circle S1

(which we may regard as complex numbers of absolute value 1). Indeed, given any point
(z0, . . . , zn) ∈ π−1(p) in the fiber, the other points are obtained as (λz0, . . . , λzn) where |λ| = 1.
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In other words, we can think of

S2n+1 =
⋃

p∈CPn
π−1(p)

as a union of circles, parametrized by the points of CPn. This is an example of a fiber bundle
or fibration.

An import important case occurs when n = 1. Identifying CP 1 ∼= S2 as above, the map π
becomes a smooth map π : S3 → S2 with fibers diffeomorphic to S1. This map appears in
many contexts; it is called the Hopf fibration.

Let S ∈ S3 be the ’south pole’, and N ∈ S3 the ’north pole’. We have that S3 − {S} ∼= R3 by
stereographic projection. The set π−1(π(S))− {S} projects to a straight line (think of it as a
circle with ’infinite radius’). The fiber π−1(N) is a circle that goes around the straight line. If
Z ⊆ S2 is a circle at a given ’latitude’, then π−1(Z) is is a 2-torus. For Z close to north pole N
this 2-torus is very thin, while for Z approaching the south pole S the radius goes to infinity.
Each such 2-torus is itself a union of circles π−1(p), p ∈ Z. Those circles are neither the usual
’vertical’ or ’horizontal’ circles of a 2-torus in R3 , but instead are ’tilted’. In fact, each such
circle is a ’perfect geometric circle’ obtained as the intersection of its 2-torus with a carefully
positioned affine 2-plane. Moreover, any two of the circles π−1(p) are ’linked’ as though they
were in a chain.

A calculation shows that over the charts U+, U− from stereographic projection, the Hopf fibra-
tion is just a product. That is, one has

π−1(U+) ∼= U+ × S1, π−1(U−) ∼= U− × S1

In particular, the pre-image of the closed upper hemisphere is a solid 2-torus D2 × S1 (with
D2 = {z ∈ C||z| ≤ 1} the unit disk), geometrically depicted as a 2-torus in R3 together with
its interior. We hence see that the S3 may be obtained by gluing two solid 2-tori along their
boundaries S1 × S1.

3.5 Submanifolds

Definition 3.7. A subset S ⊆ M is called a submanifold of dimension k ≤ m, if for all
p ∈ S there exists a coordinate chart (U, φ) around p such that

φ(U ∩ S) = φ(U) ∩ Rk.

Charts (U, φ) of M with this property are called submanifold charts for S.

Definition 3.8. A chart (U, φ) such that U ∩ S = ∅ and φ(U) ∩ Rk = ∅ is considered a
submanifold chart. The existence of submanifold charts is only required for points p that
lie in S.

Strictly speaking, a submanifold chart for S is not a chart for S, but is a chart for M which is
adapted to S. Submanifold charts restrict to charts for S, and this may be used to construct
an atlas for S.
Proposition 3.8.1. Suppose S is a submanifold of M . Then S is a k-dimensional manifold in
its own right, with atlas consisting of all charts (U∩S, φ|U∩S) such that (U, φ) is a submanifold
chart.
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Example 3.9. (Open subsets). Them-dimensional submanifolds of anm-dimensional manifold
are exactly the open subsets.
Example 3.10. (Projective spaces). For k < n, regard RP k ⊆ RPn as the subset of all
(x0 : · · · : xn) for which xk+1 = · · · = xn = 0. These are submanifolds, with the standard
charts (Ui, φi) for RPn as submanifold charts. Similarly, CP k ⊆ CPn are submanifolds, and
for n < n′ we have Gr(k, n) ⊆ Gr(k, n′) as a submanifold.
Example 3.11. (Spheres). For k < n, regard Sk ⊆ Sn as the subset where the last n − k
coordinates are zero. These are submanifolds where the charts for Sn given by stereographic
projection are submanifold charts.
Proposition 3.11.1. Let F : M → N be a smooth map between manifolds of dimensions m
and n. Then

graph(F ) = {(F (p), p)|p ∈M} ⊆ N ×M

is a submanifold of N ×M , of dimension equal to the dimension of M .

This result has the following consequence: If a subset of a manifold, S ⊆ M , can be locally
described as the graph of a smooth map, then S is a submanifold.
Proposition 3.11.2. The inclusion map i : S →M,p 7→ p, which takes any point of S to the
same point but viewed as a point of M , is smooth.
Proposition 3.11.3. Suppose S is a submanifold of M . Then the open subsets of S for its
manifold structure are exactly those of the form U ∩ S, where U is an open subset of M .

In other words, the topology of S as a manifold coincides with the ’subspace topology’ as a
subset of the manifold M .

As a consequence, if a manifold M can be realized realized as a submanifold M ⊆ Rn, then M
is compact with respect to its manifold topology if and only if it is compact as a subset of Rn,
if and only if it is a closed and bounded subset of Rn.

3.6 Smooth maps of maximal rank

Let F ∈ C∞(M,N) be a smooth map. Then the fibers (level sets) F−1(q) = {x ∈M |F (x) = q}
for q ∈ N need not be submanifolds, in general.

3.6.1 The rank of a smooth map

Let U ⊆ Rm and V ⊆ Rn be open subsets, and F ∈ C∞(U, V ) a smooth map.

Definition 3.12. The derivative of F at p ∈ U is the linear map

DpF : Rm → Rn, v 7→ d

dt

∣∣∣
t=0

F (p+ tv).

Recall that the rank of a linear map is the dimension of its range. The rank of F at p is
the rank of this linear map:

rankp(F ) = rank(DpF ).

Equivalently, DpF is the n×m matrix of partial derivatives and the rank of F at p is the rank of
this matrix i.e., the number of linearly independent rows or the number of linearly independent
columns.
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Definition 3.13. Let F ∈ C∞(M,N) be a smooth map between manifolds, and p ∈ M .
The rank of F at p ∈M is defined as

rankp(F ) = rankφ(p)(ψ ◦ F ◦ φ−1).

for any two coordinate charts (U, φ) around p and (V, ψ) around F (p) such that F (U) ⊆ V .

Definition 3.14. The map F is said to have maximal rank at p if

rankp(F ) = min(dimM,dimN).

A point p ∈M is called a critical point for F if rankp(F ) < min(dimM, dimN).

3.6.2 Local diffeomorphisms

Theorem 3.15. (Inverse Function Theorem for Rm).

Let F ∈ C∞(U, V ) be a smooth map between open subsets of Rm, and suppose that the derivative
DpF at p ∈ U is invertible. Then there exists an open neighborhood U1 ⊆ U of p such that F
restricts to a diffeomorphism U1 → F (U1).

The theorem tells us that for a smooth bijection, a sufficient condition for smoothness of the
inverse map is that the differential (i.e., the first derivative) is invertible everywhere.
Theorem 3.16. (Inverse function theorem for manifolds)

Let F ∈ C∞(M,N) be a smooth map between manifolds of the same dimension m = n. If
p ∈ M is such that rankp(F ) = m, then there exists an open neighborhood U ⊆ M of p such
that F restricts to a diffeomorphism U → F (U).

A smooth map F ∈ C∞(M,N) is called a local diffeomorphism if dimM = dimN , and F has
maximal rank everywhere. By the theorem, this is equivalent to the condition that every point
p has an open neighborhood U such that F restricts to a diffeomorphism U → F (U).

3.6.3 Level sets, submersions

Proposition 3.16.1. Suppose F ∈ C∞(U, V ) is a smooth map between open subsets U ⊆ Rm

and V ⊆ Rn, and suppose p ∈ U is such that the derivative DpF is surjective. Then there
exists an open neighborhood U1 ⊆ U of p and a diffeomorphism κ : U1 → κ(U1) ⊆ Rm such that

(F ◦ κ− 1)(u1, . . . , um) = (um−n+1, . . . , um)

for all u = (u1, . . . , um) ∈ κ(U1).

Again, this result has a version for manifolds:
Theorem 3.17. Let F ∈ C∞(M,N) be a smooth map between manifolds of dimensions m ≥ n,
and suppose p ∈M is such that rankp(F ) = n. Then there exist coordinate charts (U, φ) around
p and (V, ψ) around F (p), with F (U) ⊆ V , such that

(ψ ◦ F ◦ φ−1)(u′, u′′) = u′′

for all u = (u′, u′′) ∈ φ(U). In particular, for all q ∈ V the intersection F−1(q) ∩ U is a
submanifold of dimension m− n.
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Definition 3.18. Let F ∈ C∞(M,N). A point q ∈ N is called a regular value of F ∈
C∞(M,N) if for all x ∈ F−1(q), one has rankx(F ) = dimN . It is called a singular value
if it is not a regular value.

Note that regular values are only possible if dimN ≤ dimM . Note also that all points of N that
are not in the image of the map F are considered regular values. We may restate the theorem
as follows:
Theorem 3.19. For any regular value q ∈ N of a smooth map F ∈ C∞(M,N), the level set
S = F−1(q) is a submanifold of dimension dimS = dimM − dimN .

Definition 3.20. A smooth map F ∈ C∞(M,N) is a submersion if rankp(F ) = dimN
for all p ∈M .

Thus, for a submersion all level sets F−1(q) are submanifolds.

Example 3.21. Recall that CPn can be regarded as a quotient of S2n+1. Using charts, one
can check that the quotient map π : S2n+1 → CPn is a submersion. Hence its fibers π−1(q)
are 1-dimensional submanifolds. As discussed before these fibers are circles. As a special case,
the Hopf fibration S3 → S2 is a submersion.
Example 3.22. Let H = C2 = R4 be the quaternionic numbers. The unit quaternions are
a 3-sphere S3 . Generalizing the definition of RPn and CPn, there are also quaternionic
projective spaces, HPn. These are quotients of the unit sphere inside Hn+1 , hence one obtains
submersions

S4n+3 7→ HPn;

the fibers of this submersion are diffeomorphic to S3. For n = 1, one can show that HP 1 = S4,
hence one obtains a submersion π : S7 → S4 with fibers diffeomorphic to S3.

3.6.4 Example: The Steiner surface

[Omitted]

3.6.5 Immersions

Proposition 3.22.1. Suppose F ∈ C∞(U, V ) is a smooth map between open subsets U ⊆ Rm
and V ⊆ Rn, and suppose p ∈ U is such that the derivative DpF is injective. Then there exist
smaller neighborhoods U1 ⊆ U of p and V1 ⊆ V of F (p), with F (U1) ⊆ V1, and a diffeomorphism
χ : V1 → χ(V1), such that (χ ◦ F )(u) = (u, 0) ∈ Rm ×Rn−m

The manifolds version reads as follows:
Theorem 3.23. Let F ∈ C∞(M,N) be a smooth map between manifolds of dimensions m∞n,
and p ∈ M a point with rankp(F ) = m. Then there are coordinate charts (U, φ) around p and
(V, ψ) around F (p) such that F (U) ⊆ V and

(ψ ◦ F ◦ φ−1)(u) = (u, 0).

In particular, F (U) ⊆ N is a submanifold of dimension m.

Definition 3.24. A smooth map F : M 7→ N is an immersion if rankp(F ) = dimM for
all p ∈M .
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Theorem 3.25. If M is a compact manifold, then every injective immersion F : M → N is an
embedding as a submanifold S = F (M). By an embedding, we will mean an immersion given
as the inclusion map for a submanifold.
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4 The Tangent Bundle

For embedded submanifolds M ⊆ Rn, the tangent space TpM at p ∈ M can be defined as the
set of all velocity vectors v = γ(0), where γ : J → M is a smooth curve with γ(0) = p; here
J ⊆ R is an open interval around 0. It turns out that TpM becomes a vector subspace of Rn.
For a general manifold, we will define TpM as a set of directional derivatives.

Definition 4.1. (Tangent spaces - first version)

Let M be a manifold, p ∈ M . The tangent space TpM is the set of all linear maps
v : C∞(M)→ R of the form

v(f) =
d

dt

∣∣∣
t=0

f(γ(t))

for some smooth curve γ ∈ C∞(J,M) with γ(0) = p.

The elements v ∈ TpM are called the tangent vectors to M at p.

The following local coordinate description makes it clear that TpM is a linear subspace of the
vector space L(C∞(M), R) of linear maps C∞(M) → R, of dimension equal to the dimension
of M .
Theorem 4.2. Let (U, φ) be a coordinate chart around p. A linear map v : C∞(M)→ R is in
TpM if and only if it has the form,

v(f) = m

m∑
i=1

ai
∂(f ◦ φ−1)

∂ui

∣∣∣
u=φ(p)

for some a = (a1, . . . , am) ∈ Rm

We can use this result as an alternative definition of the tangent space, namely:

Definition 4.3. (Tangent spaces - second version)

Let (U, φ) be a chart around p. The tangent space TpM is the set of all linear maps
v : C∞(M)→ R of the form

v(f) = m

m∑
i=1

ai
∂(f ◦ φ−1)

∂ui

∣∣∣
u=φ(p)

for some a = (a1, . . . , am) ∈ Rm.

It is not immediately obvious from this second definition that TpM is independent of the choice
of coordinate chart, but this follows from the equivalence with the first definition. Any choice
of coordinate chart (U, φ) around p defines a vector space isomorphism TpM ∼= Rm, taking v to
a = (a1, . . . , am). In particular, we see that if U ⊆ Rm is an open subset, and p ∈ U , then TpU
is the subspace of the space of linear maps C∞(M)→ R spanned by the partial derivatives at
p.

We now describe yet another approach to tangent spaces which again characterizes ”directional
derivatives” in a coordinate-free way, but without reference to curves γ. Note first that every
tangent vector satisfies the product rule, also called the Leibniz rule:
Lemma 4.4. (Leibniz rule)
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Let v ∈ TpM be a tangent vector at p ∈M . Then

v(fg) = f(p)v(g) + v(f)g(p)

for all f, g ∈ C∞(M).

Alternatively, in local coordinates it is just the product rule for partial derivatives. It turns out
that the product rule completely characterizes tangent vector:
Theorem 4.5. A linear map v : C∞(M) → R defines an element of TpM if and only if it
satisfies the Leibniz product rule.

Definition 4.6. (Tangent spaces - third version)

The tangent space TpM is the space of linear maps C∞(M) → R satisfying the product
rule,

v(fg) = f(p)v(g) + v(f)g(p)

for all f, g ∈ C∞(M).

Definition 4.7. (Tangent Vectors)

The velocity vectors of curves are elements of the tangent space. Let J ⊆ R be an open
interval, and γ ∈ C∞(J,M) a smooth curve. Then for any t0 ∈ J , the tangent (or
velocity) vector γ̇(t0) ∈ Tγ(t0)M at time t0 is given in terms of its action on functions by

(γ̇(t0))(f) = d
dt

∣∣∣
t=t0

f(γ(t)). We will also use the notation dγ
dt

∣∣∣
(
t0) or dγ

dt

∣∣∣
t0

to denote the

velocity vector.

4.1 Tangent map

4.1.1 Definition of the tangent map, basic properties

The following definition generalizes the derivative to smooth maps between manifolds.

Definition 4.8. Let M,N be manifolds and F ∈ C∞(M,N). For any p ∈ M , we define
the tangent map to be the linear map

TpF : TpM → TF (p)N

given by
(TpF (v))(g) = v(g ◦ F )

for v ∈ TpM and g ∈ C∞(N)

Proposition 4.8.1. If v ∈ TpM is represented by a curve γ : J → M , then (TpF )(v) is
represented by the curve F ◦ γ.

Definition 4.9. (Pull-backs, push-forwards)

For smooth maps F ∈ C∞(M,N), one can consider various ’pull-backs’ of objects on N
to objects on M , and ’push-forwards’ of objects on M to objects on N . Pull-backs are
generally denoted by F ∗, push-forwards by F∗. For example, functions on N pull back,
curves push forward on M , and tangent vectors to M also push forward.



4.2 Tangent spaces of submanifolds 22

Proposition 4.9.1. (Chain rule) Let M,N,Q be manifolds. Under composition of maps F ∈
C∞(M,N) and F0 ∈ C∞(N,Q),

Tp(F
′ ◦ F ) = TF (p)F

′ ◦ TpF.

4.1.2 Coordinate description of the tangent map

Proposition 4.9.2. Let F ∈ C∞(U, V ) is a smooth map between open subsets U ⊆ Rm and
V ⊆ Rn. For all p ∈ M , the tangent map TpF is just the derivative (i.e., Jacobian matrix)
DpF of F at p.

Now that we have recognized TpF as the derivative expressed in a coordinate-free way, we may
liberate some of our earlier definitions from coordinates:

• The rank of F at p ∈M , denoted rankp(F ), is the rank of the linear map TpF .

• F has maximal rank at p if rankp(F ) = min(dimM, dimN).

• F is a submersion if TpF is surjective for all p ∈M ,

• F is an immersion if TpF is injective for all p ∈M ,

• F is a local diffeomorphism if TpF is an isomorphism for all p ∈M .

• p ∈M is a critical point of F is TpF does not have maximal rank at p.

• q ∈ N is a regular value of F if TpF is surjective for all p ∈ F−1(q) (in particular, if
q 6∈ F (M))

• q ∈ N is a singular value if it is not a regular value.

4.2 Tangent spaces of submanifolds

Suppose S ⊆ M is a submanifold, and p ∈ S. Then the tangent space TpS is canonically
identified as a subspace of TpM . Indeed, since the inclusion i : S 7→ M is an immersion,
the tangent map is an injective linear map, Tpi : TpS → TpM , and we identify TpS with the
subspace given as the image of this map.

Recall, the kernel of a linear mapping, also known as the null space or nullspace, is the set of
vectors in the domain of the mapping which are mapped to the zero vector.
Proposition 4.9.3. Let F ∈ C∞(M,N) be a smooth map, having q ∈ N as a regular value,
and let S∞F−1(q). For all p ∈ S,

TpS = ker(TpF ),

as subspaces of TpM .
Corollary 4.9.1. Suppose V ⊆ Rn is open, and q ∈ Rk is a regular value of F ∈ C∞(M,Rk),
defining an embedded submanifold M = F−1(q). For all p ∈ M , the tangent space TpM ⊆
TpRn = Rn is given as

TpM = ker(TpF ) ≡ ker(DpF ).

Example 4.10. Various matrix Lie Groups are submanifolds G ⊆ MatR(n), consisting of
invertible matrices with the properties

A,B ∈ G =⇒ AB ∈ G,A ∈ G =⇒ A−1 ∈ G.
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The tangent space to the identity (group unit) for such matrix Lie groups G turns out to be
important; it is commonly denoted by lower case Fraktur letters g = TIG.

1. The matrix Lie group

GL(n,R) = {A ∈ MatR(n)|det(A) 6= 0}

of all invertible matrices is an open subset of MatR(n), hence

(n,R) = MatR(n)

is the entire space of matrices.

2. For the group O(n), consisting of matrices with F (A) := ATA = I, we have computed
TAF (X) = XTA+AXT . For A = I, the kernel of this map is

o(n) = {X ∈ MatR(n)|X = −X}.

3. For the special linear group SL(n,R) = {A ∈ MatR(n)|det(A) = 1}, given as the level
set F−1(1) of the function det : MatR(n)→ R, we calculate

DAF (X) =
d

dt

∣∣∣
t=0

F (A+tX) =
d

dt

∣∣∣
t=0

det(A+tX) =
d

dt

∣∣∣
t=0

det(I+tA−1X) = tr(A−1X),

where tr : MatR(n)→ R is the trace (sum of diagonal entries). Hence

sl(n,R) = {X ∈ MatR(n)|tr(X) = 0}.

4.2.1 Example: Steiner’s surface revisited

[Omitted]

4.2.2 The tangent bundle

Proposition 4.10.1. For any manifold M of dimension m, the tangent bundle

TM =
⊔
p∈M

TpM

(disjoint union of vector spaces) is a manifold of dimension 2m. The map

π : TM →M

taking v ∈ TpM to the base point p, is a smooth submersion, with fibers in the tangent spaces.
Proposition 4.10.2. For any smooth map F ∈ C∞(M,N), the map TF : TM → TN given
on TpM as the tangent maps TpF : TpM → TF (p)N , is a smooth map
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5 Vector Fields

5.1 Vector fields as derivations

Definition 5.1. (Vector Fields - first definition).

A collection of tangent vectors Xp, p ∈M defines a vector field X ∈ X ∈M if and only if
for all functions f ∈ C∞(M) the function p 7→ Xp(f) is smooth. The space of all vector
fields on M is denoted X(M). We hence obtain a linear map X : C∞(M)→ C∞(M) such
that

X(f)|p = Xp(f).

Since each Xp satisfy the product rule (at p), it follows that X itself satisfies a product rule.
We can use this as an alternative definition:

Definition 5.2. (Vector Fields - second definition).

A vector field on M is a linear map X : C∞(M)→ C∞(M) satisfying the product rule,

X(fg) = X(f)g + fX(g)

for f, g ∈ C∞(M).

We can also express the smoothness of the tangent vectors Xp in terms of coordinate charts
(U, φ). Recall that for any p ∈ U , and all f ∈ C∞(M), the tangent vector Xp is expressed as

Xp(f) =

m∑
i=1

ai(u)
∂

∂ui

∣∣∣
u=φ(p)

(f ◦ φ−1)

Proposition 5.2.1. The collection of tangent vectors Xp, p ∈ M define a vector field if and
only if for all charts (U, φ), the functions ai : φ(U)→ R defined by

Xφ−1(u)(f) =

m∑
i=1

ai(u)
∂

∂ui
(f ◦ φ−1),

are smooth.

5.2 Vector fields as sections of the tangent bundle

Definition 5.3. (Vector fields – third definition).

A vector field on M is a smooth map X ∈ C∞(M,TM) such that π ◦X is the identity.

It is common practice to use the same symbol X both as a linear map from smooth functions
to smooth functions, i.e. X : M → TM , or as a map into the tangent bundle, X : C∞(M) →
C∞(M). The latter case can also be expressed as the ’Lie derivative’ to avoid confusion:
LX : C∞(M)→ C∞(M)
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5.3 Lie brackets

Theorem 5.4. For any two vector fields X,Y ∈ X(M) (regarded as derivations), the commu-
tator

[X,Y ] := X ◦ Y − Y ◦X : C∞(M)→ C∞(M)

is again a vector field.

Definition 5.5. (Lie Brackets)

The vector field [X,Y ] := X ◦ Y − Y ◦X is called the Lie bracket of X,Y ∈ X(M).

Note: When calculating Lie brackets X ◦ Y − Y ◦X of vector fields X,Y in local coordinates,
it is not necessary to work out the second order derivatives – we know in advance that these
are going to cancel out.

Let S ⊆ M be a submanifold. A vector field X ∈ X(M) is called tangent to S if for all p ∈ S,
the tangent vector Xp lies in TpS ⊆ TpM . (Thus X restricts to a vector field X|S ∈ X(S).)
Proposition 5.5.1. If two vector fields X,Y ∈ X(M) are tangent to a submanifold S ⊆ M ,
then their Lie bracket is again tangent to S.

5.4 Related vector fields

Definition 5.6. (F-related)

Let F ∈ C∞(M,N) be a smooth map. Vector fields X ∈ X(M) and Y ∈ X(N) are called
F -related, written as X ∼F Y , if TpF (Xp) = YF (p) for all p ∈M .

Example 5.7. If F is a diffeomorphism, then X ∼F Y if and only if Y = F∗X. In particular,
if N = M , then an equation X ∼F X means that X is invariant under F .

The F -relation of vector fields also has a simple interpretation in terms of the ’differential
operator’ picture.
Proposition 5.7.1. One has X ∼F Y if and only if for all g ∈ C∞(N), X(g ◦F ) = Y (g) ◦F .
Theorem 5.8. Let F ∈ C∞(M,N) For vector fields X1, X2 ∈ X(M) and Y1, Y2 ∈ X(M), we
have

X1 ∼F Y1, X2 ∼F Y2 → [X1, X2] ∼F [Y 1, Y 2].

5.5 Flows of vector fields

Recall, For any curve γ : J → M , with J ⊆ R an open interval, and any t ∈ J , the velocity
vector γ̇(t) ≡ dγ

dt ∈ Tγ(t)M is defined as the tangent vector, given in terms of its action on

functions as (γ̇(t))(f) = d
dtf(γ(t)). (The dot signifies a t-derivative.)

Equivalently, one may think of the velocity vector as the image of ∂
∂t |t ∈ TtJ ∼= R under the

tangent map Ttγ : γ̇(t) = (Ttγ)( ∂∂t |t).

Definition 5.9. Suppose X ∈ X(M) is a vector field on a manifold M . A smooth curve
γ ∈ C∞(J,M), where J ⊆ R is an open interval, is called a solution curve to X if
γ̇(t) = Xγ(t) for all t ∈ J .
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Geometrically, this means that at any given time t, the value of X at γ(t) agrees with the
velocity vector to γ at t, i.e. ∂

∂t ∼γ X.
Example 5.10. Consider first the case that M = U ⊆ Rm. Here curves γ(t) are of the form,

γ(t) = x(t) = (x1(t), . . . , xm(t)),

hence,

γ̇(t) =

m∑
i=1

dxi

dt

∂

∂xi

∣∣∣
x(t)

.

On the other hand, the vector field has the form X =
∑m
i=1 a

i(x) ∂
∂xi . This becomes the system

of first order ordinary differential equations,

dxi

dt
= ai(x(t)), i = 1, . . . ,m.

Theorem 5.11. (Existence and uniqueness theorem for ODE’s)

Let U ⊆ R m be an open subset, and a ∈ C∞(U,Rm). For any given x0 ∈ U , there is an open
interval Jx0

⊆ R around 0, and a solution x : Jx0
→ U of the ODE

dxi

dt
= ai(x(t)), i = 1, . . . ,m

with initial condition x(0) = x0, and which is maximal in the sense that any other solution to
this initial value problem is obtained by restriction to some subinterval of Jx0.

Thus, Jx0 is the maximal open interval on which the solution is defined.
Theorem 5.12. (Dependence on initial conditions for ODE’s)

For a ∈ C∞(U,Rm) as above, the set

J = {(t, x) ∈ R× U |t ∈ Jx}.

is an open neighborhood of {0} × U in R× U , and the map

Φ : J → U, (t, x) 7→ Φ(t, x)

is smooth.

For a general vector field X ∈ X(M) on manifolds, Equation γ̇(t) = Xγ(t) becomes dxi

dt =
ai(x(t)), i = 1, . . . ,m after introduction of local coordinates. The existence and uniqueness
theorem for ODE’s extends to manifolds, as follows:
Theorem 5.13. Let X ∈ X(M) be a vector field on a manifold M . For any given p ∈ M ,
there is an open interval Jp ⊆ R around 0, and a solution γ : Jp → M of the initial value
problem

γ̇(t) = Xγ(t), γ(0) = p,

which is maximal in the sense that any other solution of the initial value problem is obtained
by restriction to a subinterval. The set

J = {(t, p) ∈ R×M |t ∈Jp}

is an open neighborhood of {0} ×M , and the map

Φ : J →M, (t, p) 7→ Φ(t, p)

such that γ(t) = Φ(t, p) solves the initial value problem mentioned above and is smooth.
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Note that the uniqueness part uses the Hausdorff property in the definition of manifolds. Indeed,
the uniqueness part may fail for non-Hausdorff manifolds.

Definition 5.14. (Flow)

Given a vector field X, the map Φ : J → M is called the flow of X. For any given p, the
curve γ(t) = Φ(t, p) is a solution curve. One can also fix t and consider the time-t flow
Φt(p) ≡ Φ(t, p).

Intuitively, Φt(p) is obtained from the initial point p ∈M by flowing for time t along the vector
field X. One expects that first flowing for time t, and then flowing for time s, should be the
same as flowing for time t+ s. Indeed one has the following flow property
Theorem 5.15. (Flow property).

Let X ∈X (M), with flow Φ : J →M . Let (t2, p) ∈J , and t1 ∈ R. Then

(t1,Φt2(p)) ∈J ⇐⇒ (t1 + t2, p) ∈J ,

and one has
φt1(Φt2(p)) = Φt1+t2(p).

We see in particular that for any t, the map Φt : Ut → M is a diffeomorphism onto its image
Φt(Ut) = U−t, with inverse Φ−t. Let X be a vector field, and J = JX be the domain of
definition for the flow Φ = ΦX .

Definition 5.16. A vector field X ∈X (M) is called complete if JX = R×M . Thus X
is complete if and only if all solution curves exist for all time.

A vector field may fail to be complete if a solution curve escapes to infinity in finite time. This
suggests that a vector fields X that vanishes outside a compact set must be complete, because
the solution curves are ’trapped’ and cannot escape to infinity:
Proposition 5.16.1. If X ∈ X(M) is a vector field that has compact support, in the sense that
X|M−A = 0 for some compact subset A, then X is complete. In particular, every vector field
on a compact manifold is complete.
Theorem 5.17. If X is a complete vector field, the flow Φt defines a 1-parameter group of
diffeomorphisms. That is, each Φt is a diffeomorphism and

Φ0 = idM , Φt1 ◦ Φt2 = Φt1+t2 .

Conversely, if Φt is a 1-parameter group of diffeomorphisms such that the map (t, p) 7→ Φt(p)
is smooth, the equation

Xp(f) =
d

dt

∣∣∣
t=0

f(Φt(p))

defines a complete vector field X on M , with flow Φt.
Proposition 5.17.1. Let F ∈ C∞(M,N), and let X ∈X (M), Y ∈X (N) be complete vector
fields, with flows ΦXt ,Φ

Y
t .

X ∼F Y ⇐⇒ F ◦ ΦXt = ΦYt ◦ F

for all t.

In short, vector fields are F -related if and only if their flows are F -related. Φ∗t : C∞(M) →
C∞(M),Φ∗t : X(M)→ X(M).
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5.6 Geometric interpretation of the Lie bracket

For any smooth map F ∈ C∞(M,N) we defined the pull-back

F ∗ : C∞(N)→ C∞(M), g 7→ g ◦ F.

If F is a diffeomorphism, then we can also pull back vector fields: F ∗ : X(N)→ X(M), Y 7→
F ∗Y , by the condition (F ∗Y )(F ∗g) = F ∗(Y (g)) for all functions g. That is, F ∗Y ∼F Y , or in
more detail (F ∗Y )p = (TpF )−1YF (p). By Theorem 5.2, we have F ∗[X,Y ] = [F ∗X,F ∗Y ].

Any complete vector field X ∈ X(M) with flow Φt gives rise to a families of pull-back map.

Φ∗t : C∞(M)→ C∞(M), Φ∗t : X(M)→ X(M)

Definition 5.18. The Lie derivative of a function f with respect to X is the function

LX(f) =
d

dt

∣∣∣
t=0

Φ∗t f ;

thus LX(f) = X(f). The Lie derivative measures how f changes in the direction of X.
Similarly, for a vector field Y one defines the Lie derivative LX(Y ) by

LX(Y ) =
d

dt

∣∣∣
t=0

Φ∗tY ∈ X(M).

Definition 5.19. For any X,Y ∈ X(M), the Lie derivative LXY is just the Lie bracket:
LX(Y ) = [X,Y ].

Thus, the Lie bracket [X,Y ] measures ’infinitesimally’ how the vector field Y changes along the
flow of X. Note that in particular, LXY is skew-symmetric in X and Y – this is not obvious
from the definition. One can also interpret the Lie bracket as measuring how the flows of X
and Y fail to commute.
Theorem 5.20. Let X,Y be complete vector fields, with flows Φt,Ψs. Then,

[X,Y ] = 0 ⇐⇒ Φ∗tY = Y for all t

⇐⇒ Ψ∗sX = Xfor all s

⇐⇒ Φt ◦Ψs = Ψs ◦ Φtfor all s,t.

5.7 Frobenius theorem

We saw that for any vector field X ∈ X(M), there are solution curves through any given point
p ∈M . The image of this curve is an (immersed) submanifold to whichX is everywhere tangent.
One might similarly ’integral surfaces’ for pairs of vector fields, and ’integral submanifolds’ for
collections of vector fields

Definition 5.21. (Involutive)

Consider a sub-bundle E ⊆ TM of rank r. Such a subbundle is called involutive if the Lie
bracket of any two sections of E is again a section of E. For vector fields Xi as above, the
pointwise spans

Ep = span{X1|p, . . . , Xr|p}
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define a subbundle with this property. Recall, an involution is a function that is its own
inverse.

Definition 5.22. (Integral Submanifold)

Suppose X1, . . . , Xr are vector fields on the manifold M , such that the tangent vectors
X1|p, . . . , Xr|p ∈ TpM are linearly independent for all p ∈M . A r-dimensional submanifold
S ⊆ M is called an integral submanifold if the vector fields X1, . . . , Xr are all tangent to
S.

Suppose that there exists an integral submanifold S through any given point p ∈M . Then
each Lie bracket [Xi, Xj ]|p ∈ TpS, and hence is a linear combination of X1|p, . . . , Xr|p. It
follows that

[Xi, Xj ] =

r∑
k=1

ckijXk

for certain (smooth) functions ckij .

Indeed, givenX =
∑m
i=1 a

iXi and Y =
∑m
i=1 b

iXi with functions ai, bi, the condition above
guarantees that E is involutive. Given any rank r subbundle E ⊆ TM (not necessarily
involutive), a submanifold S ⊆ M is called an integral submanifold if Ep = TpS for all
p ∈ S.

Theorem 5.23. (Frobenius theorem)

Let E ⊆ TM be a subbundle of rank r. The following are equivalent:

1. There exists an integral submanifold through every p ∈M .

2. E is involutive.

In fact, if E is involutive, then it is possible to find a coordinate chart (U, φ) near any given p,
in such a way that the subbundle (Tφ)(E|U ) ⊆ Tφ(U) is spanned by the first r ≤ m coordinate
vector fields ∂

∂u1 , . . . ,
∂
∂ur .

Thus, for any involutive subbundle E ⊆ TM , then any p ∈ M has an open neighborhood U
with a nice decomposition into r-dimensional submanifolds. One calls such a decomposition
(or sometimes the involutive subbundle E itself) a (local) foliation. A foliation gives a de-
composition into submanifolds on a neighborhood of any given point. Globally, the integral
submanifolds are often only immersed submanifolds, given by immersions i : S → M with
(Tpi)(TpS) = Ep for all p ∈ S.
Example 5.24. Let Φ : M → N be a submersion. Then the subbundle E ⊆ TM with fibers
Ep = ker(TpΦ) ⊆ TpM is an involutive subbundle of rank dimM − dimN . Every fiber Φ−1(q)
is an integral submanifold.
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6 Differential Forms

6.1 Review: Differential forms on Rm

Differential forms are an approach to solving multivariable calculus problems that is indepen-
dent of coordinates. They provide a unified approach to define integrands over curves, surfaces,
solids, and higher-dimensional manifolds.

Definition 6.1. (Wedge Product in Rm)

The exterior product or wedge product is the product operator in an exterior algebra. If α
and β are differential k-forms of degrees p and q, respectively, then

α ∧ β = (−1)pqβ ∧ α.

It is not (in general) commutative, but it is associative, and bilinear.

Example 6.2. Let α, β ∈ Ω1(M). Then we define a wedge product α∧β ∈ Ω2(M), as follows:

(α ∧ β)(X,Y ) = α(X)β(Y )− α(Y )β(X).

Definition 6.3. (Differential k-form)

A differential k-form on an open subset U ⊆ Rm is an expression of the form

ω =
∑
i1...ik

ωi1 . . . ikdx
i1 ∧ · · · ∧ dxik

where ωi1...ik ∈ C∞(U) are functions, and the indices are numbers 1 ≤ i1 < · · · < ik ≤ m.
The symbol ∧ denotes the exterior product of two differential forms.

Let Ωk(U) be the vector space consisting of such expressions, with pointwise addition. It
is convenient to introduce a short hand notation I = i1, . . . , ik for the index set, and write
ω =

∑
I ωIdx

I with ωI = ωi1...ik , and dxI = dxi1 ∧ · · · ∧ dxik.

Since a k-form is determined by these functions ωI , and since there are m!
k!(m−k)! ways of picking

k-element subsets from {1, . . . ,m}, the space Ωk(U) can be identified with vector-valued smooth

functions, Ωk(U) = C∞(U,R
m!

k!(m−k)! ).

An associative product operation Ωk(U) × Ωl(U) → Ωk+l(U) by the ’rule of computation’
dxi ∧ dxj = −dxj ∧ dxi for all i, j; in particular dxi ∧ dxi = 0.

Definition 6.4. (Exterior Differential)

Using the product structure we may define the exterior differential

d : Ωk(U)→ Ωk+1(U), d

(∑
I

ωIdx
I

)
=

m∑
i=1

∑
I

∂ωI
∂xi

dxi ∧ dxI .

The key property of the exterior differential is the following fact:
Proposition 6.4.1. The exterior differential satisfies

d ◦ d = 0,
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i.e. ddω = 0 for all ω.
Example 6.5. Consider forms on R3

• The differential of a function f ∈ Ω0(R3) is a 1-form

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz,

with components being the gradient, gradf = ∇f .

• A 1-form ω ∈ Ω1(R3) is an expression ω = fdx + gdy + hdz with functions f, g, h. The
differential is

dω =

(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy +

(
∂h

∂y
− ∂g

∂z

)
dy ∧ dz +

(
∂f

∂z
− ∂h

∂x

)
dz ∧ dx.

Thinking of the coefficients of ω as the components of a function F = (f, g, h) : U → R3,
we see that the coefficients of dω give the curl of F , curl(F ) = ∇× F .

• Finally, any 2-form ω ∈ Ω2(R3) may be written ω = ady ∧ dz + bdz ∧ dx+ cdx∧ dy, with
A = (a, b, c) : U → R3. We obtain

dω = (
∂a

∂x
+
∂b

∂y
+
∂c

∂z
)dx ∧ dy ∧ dz;

the coefficient is the divergence div(A) = ∇A The usual properties curl(grad(f)) =
0, div(curl(F )) = 0 are both special cases of d ◦ d = 0.

Definition 6.6. (Support)

The support supp(ω) ⊆ U of a differential form is the smallest closed subset Z so that ω
restricted to any point in the interior of Z is not identically 0. Suppose ω ∈ Ωm(U) is a
compactly supported form of the top degree k = m, i.e. it is the set

supp(ω) = {p ∈ U : ωp 6= 0}.

Such a differential form is an expression ω = fdx1 ∧ · · · ∧ dxm where f ∈ C∞(U) is a
compactly supported function

Definition 6.7. (Riemann Integral)

One defines the integral of ω to be the Riemann integral:∫
U

ω =

∫
Rm

f(x1, . . . , xm)dx1 . . . dxm.

Note that we can regard ω as a form on all of Rm, due to the compact support condition.

Our aim is now to define differential forms on manifolds, beginning with 1-forms. Even though
1-forms on U ⊆ Rm are identified with functions U → Rm, they should not be regarded as
vector fields, since their transformation properties under coordinate changes are different. In
fact, while vector fields are sections of the tangent bundle, the 1-forms are sections of its dual
space, the cotangent bundle. We will thus begin with a review of dual spaces in general.
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6.2 Dual spaces

Definition 6.8. (Dual space)

For any real vector space E, we denote by E∗ = L(E,R) (the linear subspace) as its dual
space, consisting of all linear maps α : E → R.

If E is finite-dimensional, then the dual space is also finite-dimensional, and dimE∗ = dimE.
It is common to write the value of α ∈ E∗ on v ∈ E as a pairing, using the bracket notation
〈α, v〉 := α(v);. (In physics, it is common to use Dirac bra-ket notation 〈α|v〉 := α(v).)

Definition 6.9. (Dual Basis)

Let e1, . . . , er be a basis of E. Any element of E∗ is determined by its values on these
basis vectors. For i = 1, . . . , r, let ei ∈ E∗ be the linear functional such that

〈ei, ej〉 = ∂ij =

{
0, if i 6= j

1, if i = j

The elements e1, . . . , er are a basis of E∗; this is called the dual basis.

The element α ∈ E∗ is described in terms of the dual bases as α =
∑r
j=1 αje

j , αj = 〈α, ej〉.
Similarly, for vectors v ∈ E we have v =

∑r
i=1 v

iei, v
i = 〈ei, v〉.

Definition 6.10. (Dual Map)

Given a linear map R : E → F between vector spaces, one defines the dual map R∗ : F ∗ →
E∗ (note the direction), by setting 〈R∗β, v〉 = 〈β,R(v)〉 for β ∈ F ∗ and v ∈ E.

This satisfies (R∗)∗ = R, and under the composition of linear maps, (R1 ◦ R2)∗ = R∗2 ◦ R∗1.
In terms of basis e1, . . . , er of E and f1, . . . , fs of F , and the corresponding dual bases (with
upper indices), a linear map R : E → F is given by the matrix with entries Rji = 〈f j , R(ei)〉,
while R∗ is described by the transpose of this matrix (the roles of i and j are reversed). Thus,
(R∗)ji = Rji .

6.3 Cotangent spaces

Definition 6.11. (Cotangent spaces, vectors, maps)

The dual of the tangent space TpM of a manifold M is called the cotangent space at p,
denoted T ∗pM = (TpM)∗.

Elements of T ∗pM are called cotangent vectors, or simply covectors.

Given a smooth map F ∈ C∞(M,N), and any p ∈M we have the cotangent map T ∗pF =
(TpF )∗ : T ∗F (p)N → T ∗pM defined as the dual to the tangent map.

Thus, a co(tangent) vector at p is a linear functional on the tangent space, assigning to each
tangent vector at p a number. The very definition of the tangent space suggests one such
functional: Every function f ∈ C∞(M) defines a linear map, TpM → R, v 7→ v(f). This linear
functional is denoted (df)p ∈ T ∗pM .
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Definition 6.12. (Differential)

Let f ∈ C∞(M) and p ∈M . The covector

(df)p ∈ T ∗pM, 〈(df)p, v〉 = v(f).

is called the differential of f at p.

Lemma 6.13. For F ∈ C∞(M,N) and g ∈ C∞(N),

d(F ∗g)p = T ∗pF ((dg)F (p)).

Let U ⊆ Rm and V ⊆ Rn be open, with coordinates x1, . . . , xm and y1, . . . , yn. For F ∈
C∞(U, V ), the tangent map is described by the Jacobian matrix.

Thought of as matrices, the coefficients of the cotangent map are the transpose of the coefficients
of the tangent map.

6.4 1-forms

Similar to the definition of vector fields, one can define co-vector fields, more commonly known
as 1-forms: Collections of covectors αp ∈ T ∗pM depending smoothly on the base point.

Definition 6.14. (1-form)

A 1-form on M is a linear map

α : X(M)→ C∞(M), X 7→ α(X) = 〈α,X〉,

which is C∞(M)-linear in the sense that α(fX) = fα(X) for all f ∈ C∞(M), X ∈ X(M).
The space of 1-forms is denoted Ω1(M).

Let us verify that a 1-form can be regarded as a collection of covectors:
Lemma 6.15. Let α ∈ Ω1(M) be a 1-form, and p ∈M . Then there is a unique covector in the
cotangent space αp ∈ T ∗pM such that α(X)p = αp(Xp) for all X ∈ X(M). Note, we indicate
the value of the function α(X) at p by a subscript, just like we did for vector fields.

The first example of a 1-form is described in the following definition.

Definition 6.16. (Exterior differential)

The exterior differential of a function f ∈ C∞(M) is the 1-form df ∈ Ω1(M), defined in
terms of its pairings with vector fields X ∈ X(M) as 〈df,X〉 = X(f).

Lemma 6.17. Let α : p 7→ αp ∈ T ∗pM be a collection of covectors. Then α defines a 1-form,
with

α(X)p = αp(Xp)

for p ∈ M , if and only if for all charts (U, φ), the coefficient functions for α in the chart are
smooth
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6.5 Pull-backs of function and 1-forms

Recall that for any manifold M , the vector space C∞(M) of smooth functions is an algebra,
with product the pointwise multiplication. Any smooth map F : M → M ′ between manifolds
defined an algebra homomorphism, called the pull-back

F ∗ : C∞(M ′)→ C∞(M), f 7→ F ∗(f) := f ◦ F.

The fact that this preserves products is the following simple calculation:

(F ∗(f)F ∗(g))(p) = f(F (p))g(F (p)) = (fg)(F (p)) = F ∗(fg)(p).

Given another smooth map F ′ : M ′ →M ′′ we have (F ′ ◦ F )∗ ◦ F ∗ ◦ (F ′)∗.

Let F ∈ C∞(M,N) be a smooth map. Recall that for vector fields, there is no general ’push-
forward’ or ’pull-back’ operation, unless F is a diffeomorphism. For 1-forms the situation is
better: for any p ∈M one has the dual to the tangent map

T ∗pF = (TpF )∗ : T ∗F (p)N → T ∗pM.

For a 1-form β ∈ Ω1(N), we can therefore define (F ∗β)p := (T ∗pF )(βF (p))
Lemma 6.18. The collection of co-vectors (F ∗β)p ∈ T ∗pM depends smoothly on p, defining a
1-form F ∗β ∈ Ω1(M).

The Lemma shows that we have a well-defined pull-back map F ∗ : Ω1(N)→ Ω1(M), β 7→ F ∗β.
Under composition of two maps, (F1 ◦F2)∗ = F ∗2 ◦F ∗1 . The pull-back of forms is related to the
pull-back of functions, g 7→ F ∗g = g ◦ F :
Proposition 6.18.1. For g ∈ C∞(N), F ∗(dg) = d(F ∗g).

Recall once again that while F ∈ C∞(M,N) induces a tangent map there is no natural push-
forward operation for vector fields. By contrast, for cotangent bundles there is no naturally
induced map from T ∗N to T ∗M (or the other way), yet there is a natural pull-back operation
for 1-forms. For any related vector fields X ∼F Y , and β ∈ Ω1(N), we then have that
(F ∗β)(X) = F ∗(β(Y )). Indeed, at any given p ∈ M this just becomes the definition of the
pullback map.

6.6 Integration of 1-forms

Given a curve γ : J → M in a manifold, and any 1-form α ∈ Ω1(M), we can consider the
pull-back γ∗α ∈ Ω1(J). By the description of 1-forms on R, this is of the form γ∗α = f(t)dt
for a smooth function f ∈ C∞(J).

To discuss integration, it is convenient to work with closed intervals rather than open intervals.
Let [a, b] ⊆ R be a closed interval. A map γ : [a, b]→M into a manifold will be called smooth
if it extends to a smooth map from an open interval containing [a, b]. We will call such a map
a smooth path.

Definition 6.19. (Integral)

Given a smooth path γ : [a, b] → M , we define the integral of a 1-form α ∈ Γ1(M) along
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γ as ∫
γ

α =

∫ a

b

γ∗α.

The fundamental theorem of calculus has the following consequence for manifolds. It is a special
case of Stokes’ theorem
Proposition 6.19.1. Let γ : [a, b] → M be a smooth path, with γ(a) = p, γ(b) = q. For any
f ∈ C∞(M), we have

∫
γ
df = f(q)− f(p). In particular, the integral of df depends only on the

end points of the path, rather than the path itself.

Definition 6.20. A 1-form α ∈ Ω1(M) such that α = df for some function f ∈ C∞(M)
is called exact.

Example 6.21. Consider the 1-form α = y2exdx + 2yexdy ∈ Ω(R2). Find the integral of
α along the path γ : [0, 1] → M, t 7→ (sin(πt/2), t3). Observe that the 1-form α is exact:
α = d(y2ex) = df with f(x, y) = y2ex. The path has end points γ(0) = (0, 0) and γ(1) = (1, 1).
Hence,

∫
γ
α = f(γ(1))− f(γ(0)) = e.

6.7 2-forms

Definition 6.22. A 2-form on M is a C∞(M)-bilinear skew-symmetric map

α : X(M)× X(M)→ C∞(M), (X,Y ) 7→ α(X,Y )

Here skew-symmetry means that α(X,Y ) = −α(Y,X) for all vector fields X,Y , while
C∞(M)-bilinearity means

α(fX, Y ) = fα(X,Y ) = α(X, fY )

for f ∈ C∞(M), as well as α(X ′ + X ′′, Y ) = α(X ′, Y ) + α(X ′′, Y ), and similarly in the
second argument. Also, if α is a 2-form then so is fα for any smooth function f .

Example 6.23. For an open subset U ⊆ Rm, a 2-form ω ∈ Ω2(U) is uniquely determined

by its values on coordinate vector fields. By skew-symmetry the functions ωij = ω

(
∂
∂xi ,

∂
∂xj

)
satisfy ωij = −ωji; hence it suffices to know these functions for i < j. As a consequence, we
see that the most general 2-form on U is

ω =
1

2

m∑
i,j=1

ωijdx
i ∧ dxj =

∑
i<j

ωijdx
i ∧ dxj .

6.8 k-forms

6.8.1 Definition

Definition 6.24. Let k be a non-negative integer. A k-form onM is a C∞(M)-multilinear,
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skew-symmetric map
α : X(M)× · · · × X(M)︸ ︷︷ ︸

k times

→ C∞(M).

The space of k-forms is denoted Ωk(M); in particular Ω0(M) = C∞(M)

Here, skew-symmetry means that α(X1, . . . , Xk) changes sign under exchange of any two of its
elements. The C∞(M)-multilinearity means C∞(M)-linearity in each argument, similar to the
condition for 2-forms. It implies α is local in the sense that the value of α(X1, . . . , Xk) at any
given p ∈M depends only on the values X1|p, . . . ,Xk|p ∈ TpM .

If α1, . . . , αk are 1-forms, then one obtains a k-form α =: α1 ∧ · · · ∧ αk by wedge product.

Using C∞-multilinearity, a k-form on U ⊆ R m is uniquely determined by its values on coor-
dinate vector fields. i.e. by the functions,

αi1...ik = α

(
∂

∂xi1
, . . . ,

∂

∂xik

)
Moreover, by skew-symmetry we only need to consider ordered index sets I = i1, . . . , ik ⊆
1, . . . ,m, that is, i1 < · · · < ik. Using the wedge product notation, we obtain

α =
∑

i1<···<ik

αi1···kdx
i1 ∧ . . . dxik .

6.8.2 Wedge product

Definition 6.25. (k,l-shuffle )

A permutation s ∈ Sk+l is called a k, l-shuffle if it satisfies

s(1) < · · · < s(k), s(k + 1) < · · · < s(k + l).

Definition 6.26. (Wedge product)

The wedge product of α ∈ Γk(M), β ∈ Γl(M) is the element

α ∧ β ∈ Γk+l(M)

given as

(α ∧ β)(X1, . . . , Xk+l) =
∑

sign(s)α(Xs(1), . . . , Xs(k))β(Xs(k+1), ..., Xs(k+l))

where the sum is over all k, l-shuffles.

The wedge product is graded commutative: If α ∈ Ωk(M) and β ∈ Ωl(M) then α ∧ β =
(−1)klβ ∧ α. Furthermore, it is associative:
Proposition 6.26.1. Given αi ∈ Ωki(M) we have (α1 ∧ α2) ∧ α3 = α1 ∧ (α2 ∧ α3)
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6.8.3 Exterior differential

Recall that we defined the exterior differential on functions by the formula (df)(X) = X(f).
We will now extend this definition to all forms.
Theorem 6.27. There is a unique collection of linear maps d : Ωk(M)→ Ωk+1(M), extending
the map (df)(X) = X(f) for k = 0, such that d(df) = 0 and satisfying the graded product rule,

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ

for α ∈ Ωk(M) and β ∈ Ωl(M). This exterior differential satisfies d ◦ d = 0.

Definition 6.28. (Exact, closed k-forms)

A k-form ω ∈ Ωk(M) is called exact if ω = dα for some α ∈ Ωk−1(M). It is called closed
if dω = 0.

Since d ◦ d = 0, the exact k-forms are a subspace of the space of closed k-forms; a necessary
condition for α to be exact is that it is closed.
Example 6.29. The quotient space (closed k-forms modulo exact k-forms) is a vector space
called the k-th (de Rham) cohomology

Hk(M) =
{α ∈ Ωk(M)|αisclosed}
{α ∈ Ωk(M)|αisexact}

.

It turns out that whenever M is compact (and often also if M is non-compact), Hk(M) is a
finite-dimensional vector space. The dimension of this vector space bk(M) = dimHk(M) is
called the k-th Betti number of M ; these numbers are important invariants of M which one
can use to distinguish non-diffeomorphic manifolds.

6.9 Lie derivatives and contractions

Definition 6.30. (Contractions)

Given a vector field X, and a k-form α ∈ ωk(M), we can define a k − 1-form

ιXα ∈ ωk − 1(M)

by contraction: Thinking of α as a multi-linear form, one simply puts X into the first slot:

(ιXα)(X1, ..., Xk−1) = α(X,X1, . . . , Xk−1).

Contractions have the following compatibility with the wedge product, similar to that for
the exterior differential:

ιX(α ∧ β) = ιXα ∧ β + (−1)kα ∧ ιXβ,

for α ∈ ωk(M),β ∈ ωl(M), which one verifies by evaluating both sides on vector fields.

Another important operator on forms is the Lie derivative:
Theorem 6.31. Given a vector field X, there is a unique collection of linear maps LX :
Ωk(M)→ Ωk(M), such that

LX(f) = X(f), LX(df) = dX(f),
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and satisfying the product rule,

LX(α ∧ β) = LXα ∧ β + α ∧ LXβ

for α ∈ Ωk(M) and β ∈ Ωl(M).

These operators, d, LX , ιX , have the following compatibilities with the wedge product: For
α ∈ Ωk(M) and β ∈ Ωl(M) one has

d(α ∧ β) = (dα) ∧ β + (−1)kα ∧ dβ,
LX(α ∧ β) = (LXα) ∧ β + α ∧ LXβ,
ιX(α ∧ β) = (ιXα) ∧ β + (−1)kα ∧ ιXβ.

One says that LX is an even derivation relative to the wedge product, whereas d, ιX are odd
derivations. They also satisfy important relations among each other:

d ◦ d = 0

LX ◦ LY − LY ◦ LX = L[X,Y ]

ιX ◦ ιY + ιY ◦ ιX = 0

d ◦ LX − LX ◦ d = 0

LX ◦ ιY − ιY ◦ LX = ι[X,Y ]

ιX ◦ d+ d ◦ ιX = LX .

This collection of identities is referred to as the Cartan calculus, , and in particular the last
identity is called the Cartan formula.

6.9.1 Pull-backs

Definition 6.32. (k-form Pullbacks)

Similar to the pull-back of functions (0-forms) and 1-forms, we have a pull-back op-
eration for k-forms, F ∗ : Ωk(N) → Ωk(M) for any smooth map between manifolds,
F ∈ C∞(M,N). Its evaluation at any p ∈M is given by

(F ∗β)p(v1, . . . , vk) = βF (p)(TpF (v1), . . . , TpF (vk)).

The pull-back map satisfies d(F ∗β) = F ∗dβ, and for a wedge product of forms, F ∗(β1 ∧ β2) =
F ∗β1 ∧ F ∗β2.
Proposition 6.32.1. Let U ⊆ Rmwith coordinates xi , and V ⊆ Rn with coordinates yj.
Suppose m = j, and F ∈ C∞(U, V ). Then

F ∗(dy1 ∧ · · · ∧ dyn) = Jdx1 ∧ · · · ∧ dxn

where J(x) is the determinant of the Jacobian matrix,

J(x) = det

(
∂F i

∂xj

)n
i,j=1

.
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The Lie derivative LXα of a differential form with respect to a vector field X has an important
interpretation in terms of the flow Φt of X. Assuming for simplicity that X is complete (so
that Φt is a globally defined diffeomorphism), one has the formula

LXα =
d

dt

∣∣∣
t=0

Φ∗tα.

The formula shows that LX measures to what extent α is invariant under the flow of X.

6.9.2 Integration of differential forms

Differential forms of top degree can be integrated over oriented manifolds. Let M be an oriented
manifold of dimension m, and ω ∈ Ωm(M). Let supp(ω) be the support of ω. If supp(ω) is
contained in an oriented coordinate chart (U, φ), then one defines∫

M

ω =

∫
Rm

f(x)dx1 · · · dxm

where f ∈ C∞(Rm) is the function, with supp(f) ⊆ φ(U), determined from

(φ−1)∗ω = fdx1 ∧ · · · ∧ dxm.

This definition does not depend on the choice of oriented chart.

If ω is not necessarily supported in a single oriented chart, we proceed as follows. Let (Ui, φ
i), i =

1, . . . , r be a finite collection of oriented charts covering supp(ω). Together with U0 = M \
supp(ω) this is an open cover of M .
Lemma 6.33. Given a finite open cover of a manifold there exists a partition of unity subor-
dinate to the cover, i.e. functions χi ∈ C∞(M) with supp(χi) ⊆ Ui and

∑r
i=0 χi = 1.

Indeed, partitions of unity exists for any open cover, not only finite ones. Let χ0, . . . , χr be a
partition of unity subordinate to this cover. We define∫

M

ω =

r∑
i=1

∫
M

χiω

where the summands are defined as above, since χiω is supported in Ui for i ≥ 1. It can be
shown that this is well defined, independent of the choice of oriented coordinate charts.

6.9.3 Integration over oriented submanifolds

Let M be a manifold, not necessarily oriented, and S is a k-dimensional oriented submanifold,
with inclusion i : S → M . We define the integral over S, of any k-form ω ∈ Ωk(M) such that
S ∩ supp(ω) is compact, as follows:

∫
S

ω =

∫
S

i∗ω.

Of course, this definition works equally well for any smooth map from S into M . For example,
the integral of compactly supported 1-forms along arbitrary paths γ : R→M is defined. Note
also that M itself does not have to be oriented, it suffices that S is oriented.
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6.9.4 Stokes’ theorem

Let M be an m-dimensional oriented manifold.

Definition 6.34. (Boundary and interior of region)

A region with (smooth) boundary in M is a closed subset D ⊆ M with the following
property: There exists a smooth function f ∈ C∞(M,R) such that 0 is a regular value of
f , and

D = {p ∈M |f(p) ≤ 0}.

We do not consider f itself as part of the definition of D, only the existence of f is required.

The interior of a region with boundary, given as the largest open subset contained in D, is

int(D) = {p ∈M |f(p) < 0,

and the boundary itself is
∂D = {p ∈M |f(p) = 0},

a codimension 1 submanifold (i.e., hypersurface) in M .

Recall that we are considering D inside an oriented manifold M . The boundary ∂D may be
covered by oriented submanifold charts (U, φ), in such a way that ∂D is given in the chart by
the condition x1 = 0, and D by the condition x1 ≤ 0:

φ(U ∩D) = φ(U) ∩ {x ∈ Rm|x1 ≤ 0}.

We call oriented submanifold charts of this kind ’region charts’.
Lemma 6.35. The restriction of the region charts to ∂D form an oriented atlas for ∂D.

In particular, ∂D is again an oriented manifold. To repeat: If x1, . . . , xm are local coordinates
near p ∈ ∂D, compatible with the orientation and such that D lies on the side x1 ≤ 0, then
x2, . . . , xm are local coordinates on ∂D. This convention of ‘induced orientation’ is arranged in
such a way that the Stokes’ theorem holds without extra signs.

For an m-form ω such that supp(ω) ∩D is compact, the integral
∫
D
ω is defined similar to the

case of D = M .
Theorem 6.36. (Stokes’ Theorem)

Let M be an oriented manifold of dimension m, and D ⊆ M a region with smooth boundary
∂D. Let α ∈ Ωm−1(M) be a form of degree m− 1, such that supp(α) ∩D is compact. Then∫

D

dα =

∫
∂D

α.

As explained above, the right hand side means
∫
∂D

i∗α, where i : ∂D → M is the inclusion
map.
Corollary 6.36.1. Let α

∫
Ωm−1(M) be a compactly supported form on the oriented manifold

M . Then ∫
M

dα = 0.
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Note that it does not suffice that dα has compact support. A typical application of Stokes’
theorem shows that for a closed form ω ∈ Ωk(M), the integral of ω over an oriented compact
submanifold does not change with smooth deformations of the submanifold.
Theorem 6.37. Let ω ∈ Ωk(M) be a closed form on a manifold M , and S a compact, oriented
manifold of dimension k. Let F ∈ C∞(R × S,M) be a smooth map, thought of as a smooth
family of maps

Ft = F (t, ·) : S →M.

Then the integrals
∫
S
F ∗tω do not depend on t.

If Ft is an embedding, then this is the integral of ω over the submanifold Ft(S) ⊆M .

Definition 6.38. (Smooth isotopy)

Given a smooth map φ : S →M , one refers to a smooth map F : R×S →M with F0 = φ
as an smooth deformation or isotopy of φ. We say that φ can be smoothly deformed into
φ′ if there exists a smooth isotopy F with φ = F0 and φ′ = F1.

The previous theorem shows that if S is oriented, and if there is a closed form ω ∈ Ωk(M) with∫
S

φ∗ω 6=
∫
S

(φ′)∗ω

then φ cannot be smoothly deformed into φ0.
Example 6.39. (Winding number).

Letω ∈ Ω2(R2{0}) be the 1-form ω = 1
x2+y2 (xdy − ydx). In polar coordinates x = r cos θ, y =

r sin θ, one has that ω = dθ. Using this fact one sees that ω is closed (but not exact, since θ
is not a globally defined function on R2{0}.) Hence, if γ : S1 → R2{0} is any smooth map (a
‘loop’), then the integral

∫
S1 γ

∗ω does not change under deformations (isotopies) of the loop. In
particular, γ cannot be deformed into a constant map, unless the integral is zero. The number

w(γ) =
1

2π

∫
S1

γ∗ω

is the winding number of γ. (One can show that this is always an integer, and that two loops
can be deformed into each other if and only if they have the same winding number.)

6.9.5 Volume forms

Definition 6.40. A non vanishing 1-form α at point p means that there is a vector v
in TpM such that αp(v) 6= 0. Similarly for the k-form, it means that there is a set of k
vectors such the form is nonzero if evaluated on these vectors.

Definition 6.41. (Volume form)

A top degree differential form Γ ∈ Ωm(M) is called a volume form if it is nonvanishing
everywhere: Γp 6= 0 for all p ∈M . In a local coordinate chart (U, φ), this means that

(φ−1)∗Γ = fdx1 ∧ · · · ∧ dxm

where f(x) 6= 0 for all x ∈ φ(U).
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Lemma 6.42. A volume form Γ ∈ Ωm(M) determines an orientation on M , by taking as the
oriented charts those charts (U, φ) such that

(φ−1)∗Γ = fdx1 ∧ · · · ∧ dxm

with f > 0 everywhere on Φ(U).
Theorem 6.43. A manifold M is orientable if and only if it admits a volume form. In this
case, any two volume forms compatible with the orientation differ by an everywhere positive
smooth function:

Γ′ = fΓ, f > 0.

Definition 6.44. (Volume)

For a compact manifold M with a given volume form Γ ∈ Ωm(M), one can define the
volume of M ,

vol(M) =

∫
M

Γ.

Here the orientation used in the definition of the integral is taken to be the orientation
given by Γ . Thus vol(M) > 0.

Note that volume forms are always closed, for degree reasons (since Ωm+1(M) = 0). But on a
compact manifold, they cannot be exact:
Theorem 6.45. Let M be a compact manifold with a volume form Γ ∈ Ωm(M). Then Γ
cannot be exact.

7 De Rham Cohomology

The exterior derivative converts the algebra of differential forms on a manifold into a graded
differential algebra. The corresponding cohomology is called the de Rham cohomology algebra.

See Text for full details: http://im0.p.lodz.pl/ kubarski/AnalizaIV/Wyklady/GHV/ITOM/G-
H-V-1

In article 1 it is shown that the de Rham cohomology satisfies the dimension, homotopy, disjoint
union, and Mayer-Vietoris axioms. In article 2 various examples (retracts, PoincarC lemma,
cohomology of Sn, and RP”) are discussed. In article 3 everything is done again (with the
appropriate modifications) for differential forms with compact carrier. In article 4 the integral
is used to establish the PoincarC duality theorem for a smooth orientable manifold. This
theorem is applied in article 5 (sec. 5.13 and 5.14) to determine the nth de Rham cohomology
space for any n-manifold (orientable or nonorientable). In sec. 5.15 the duality theorem is used
to show that a compact manifold has finitedimensional de Rham cohomology. The de Rham
cohomology of the product of two manifolds is computed in article 6 (Kunneth theorems). In
article 7 one version of the de Rham theorem is established. The results of this article are not
quoted elsewhere in the book.

8 Overview of Riemannian Geometry

Note, there may be changes in notation from switching reading source.
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On Rn we have notions like:

1. Length of vectors angles orthonormal/orthogonal geometry

2. Areas volumes length of curves

3. Distance between 2 points

4. Parallel transport

Observe: All of the elements of Euclidean geometry on R is entirely encoded in the inner
product. We introduce geometry into smooth manifolds by making a choice of inner products
on each TpM that varies smoothly from point to point. This is an inner product.

Definition 8.1.
g : M → T 2(T ∗pM), p 7→ gp ∈ T 2(T ∗pM)

so that gp is an inner product on TpM and is bilinear symmetric, nondegenerative, and
positive definite.

Then gp ∈ C∞ iff g : X(M)× X(M)→ C∞(M), defined by g(x, y)(p) = gp(xp, yp). Note,
gp is non-linear.

Definition 8.2. (M, g) is called a Riemannian manifold.

The manifold has the following properties:

1. The length of vectors for v ∈ Tpm, ||v|| =
√
g(v, v), cos(anglevw) = g(v,w)

||v||||w|| .

Lemma 8.3. Near each point, there exists an orthonormal local frame.

2. The length of curve γ :=
∫ b
a

√
g(γ(t), γ′(t))dt.

3. Distance d : M ×M → [0,∞) is defined by d(p, q) = inf(
∫ 1

0
||γ′(t)||)dt where γ(0) =

p, γ(1) = q.

This makes (M,d) a metric space so that the metric topology is the same as the original
topology. One can show that (M,d) is complete as a metric space iff d(p, q) is obtained
by a curve γ for all p, q ∈M .

4. There is a natural isomorphism Φp : TpM → T ∗pM, v 7→ (v∗ : w 7→ g(v, w)). So there is
a module isomorphism Φ : X→ Ω′(M).

5. Let S ⊆M be a k-dimensional manifold. Then i∗g (induced metric on S) is a Riemannian
metric on S giving S the unique geometry inherited by M .

6. Suppose M in oriented. There does not exist a nowhere vanishing n-form called the
volume form satisfying ω(x1, . . . , xn) = 1 whenever x is a local orthonormal frame that
has positive orientation. This allows for integration of functions for f ∈ C∞(M) defined
as
∫
M
f :=

∫
m
fω. Also, if M is compact, we have vol(M) =

∫
M

1
∫
M
ω. Similarly,

V olk−dim(S) =
∫
S

1 with respect to the induced metric i∗g on S.

7. We say (M, g), (M̃, g̃) are isometric if there exists a diffeomorphism F : M → M̃ such
that g = F ∗g̃
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8.1 Covariant derivative and curvature

If a parallel transport of a vector along a curve has the property that Dγ′(t) = 0, then γ is the
shortest distance between p and q so γ is a line.

On a sphere in S2, parrallel transport is equivalent to (δγ′(t)X)T = 0 intrinsic to the round
metric (S3, g). Then the shortest paths are the curves which form great circles.

Define (δ̃XY ) = (δXY )T as the connection operator for X,Y ∈ X(S2). This operator is intrinsic
to S2 and satisfies:

1. C∞-linear w.r.t. X.

2. R-linear w.r.t. Y .

3. (δ̃XfY ) = X(f)Y + f δ̃XY .

4. δ̃xy − ˜δyX = LxY

5. Z(g(x, y))− g(δ̃ZX,Y )− g(x, δ̃Zy) = 0

Let γ be a curve, then

d

dt
(g(Xγ(t)), Yγ(T )) = g( ˜γ′(t)X,Y ) + g(X, ˜γ′(t)Y ).

Theorem 8.4. On a manifold (M, g) there does not exist a connection δ : X×X→ X satisfying
(4)

[X,Y ] = δXY −DYX

and (5)
Z(g(x, y))− g(δZX,Y )− g(x, δZy) = 0

compatible with the metric. (5) gives rise to the notion of parallel transport on Riemannian
manifolds and is called the Levi-Civita connection.

So we say that X is parrellel transported on a curve γ on M if δγ′(t)X = 0 for all t.

Definition 8.5. (Geodesic)

γ is a geodesic if δγ′(t)X = 0 for all t.

Theorem 8.6. If d(p, q) is attained by a curve γ, then γ is a geodesic.

Note, the converse is not true. A counter example of a great circle minus a small segment will
not be the shortest distance between the two points.

Let (U, φ) be a chart.

δ ∂

∂xi

∂

∂xi
=
∑
k

Γkij
∂

∂xk

Where Γkij are the Levi-Civita connection coeffecients and are completely determined by the
metric.

Γkij = 1
2g
mk

(
∂gim
∂xj

+
∂gjm
∂xi

− partialgij
∂xm

)

gij = g(
∂

∂xi
,
∂

∂xj
)
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The term covariant derivative is often used for the Levi-Civita connection. The coefficients of
this connection with respect to a system of local coordinates are called Christoffel symbols.

8.2 Curvature

Recall L[X,Y ] = [LX , LY ]. If [X,Y ] = 0 commutes, then LXLY − LY LX = 0 This fails in
general for the covariant derivative. This failure is measured by a tensor field that plays a
central role in all of differential geometry.

R(X,Y )Z = δXδY Z − δY δXZ − δ[X,Y ]Z

This is a (1, 3) tensor field which can be proven by showing that R is C∞-linear with respect
to each component.

9 Lie Groups

See notebook on Lie Groups

https://github.com/lukepereira/notebooks/
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