Object-Oriented Programming and Design Patterns

Contents

[L Object-Oriented Design|

[1.1 Classes, Objects and Interfaces|
1.2 olymorphism|.

[1.5 Composition] e
1.6 elegation|. L
1.7 Parameterized Types|
1.8 un-Time and Compile-Time Structures|.
[1.9 SOLID Principles| oo

[2_Design Patterns|

1.1 Abstract Factory ¥
BI2 Builderdo
P13 Factory Method ¥ o v v i

[2.1.4 Prototype|
2.1.5 ingleton|

21 Adapter ¥
2.2.2 ridgel L e

223 Composite ™

2.3.9 Strategy M.
2.3.10 Template Method ¥

LU O W W NN

o o O

1 Object-Oriented Design

1.1 Classes, Objects and Interfaces

Object-oriented programs are made up of objects. An object packages both data and the
procedures that operate on that data. The procedures are typically called methods or op-
erations. An object performs an operation when it receives a request (or message) from a
client.

Requests are the only way to get an object to execute an operation. Operations are the only
way to change an object’s internal data. Because of these restrictions, the object’s internal state
is said to be encapsulated; it cannot be accessed directly, and its representation is invisible
from outside the object.

Every operation declared by an object specifies the operation’s name, the objects it takes as
parameters, and the operation’s return value. This is known as the operation’s signature. The
set of all signatures defined by an object’s operations is called the interface to the object. An
object’s interface characterizes the complete set of requests that can be sent to the object. Any
request that matches a signature in the object’s interface may be sent to the object.

A type is a name used to denote a particular interface. An object may have many types, and
widely different objects can share a type. The class defines the object’s internal state and the
implementation of its operations. In contrast, an object’s type only refers to its interface —
the set of requests to which it can respond. Part of an object’s interface may be characterized
by one type, and other parts by other types. Two objects of the same type need only share
parts of their interfaces. Interfaces can contain other interfaces as subsets. We say that a type
is a subtype of another if its interface contains the interface of its supertype. Often we speak
of a subtype inheriting the interface of its supertype.

Objects are created by instantiating a class. The object is said to be an instance of the class.
The process of instantiating a class allocates storage for the object’s internal data (made up of
instance variables) and associates the operations with these data. Many similar instances of an
object can be created by instantiating a class.

A useful analogy is as follows: A blueprint for a house design is like a class description. All the
houses built from that blueprint are objects of that class. A given house is an instance.

1.2 Polymorphism

The run-time association of a request to an object and one of its operations is known as
dynamic binding, which means that issuing a request doesn’t commit you to a particular
implementation until run-time. Consequently, you can write programs that expect an object
with a particular interface, knowing that any object that has the correct interface will accept the
request. Moreover, dynamic binding lets you substitute objects that have identical interfaces
for each other at run-time. This substitutability is known as polymorphism, and it’s a key
concept in object-oriented systems. It lets a client object make few assumptions about other
objects beyond supporting a particular interface. Polymorphism simplifies the definitions of
clients, decouples objects from each other, and lets them vary their relationships to each other
at run-time.

1.3 Inheritence

New classes can be defined in terms of existing classes using class inheritance. Class in-
heritance is basically just a mechanism for extending an application’s functionality by reusing
functionality in parent classes. When a subclass inherits from a parent class, it includes the def-
initions of all the data and operations that the parent class defines. Objects that are instances
of the subclass will contain all data defined by the subclass and its parent classes, and they’ll
be able to perform all operations defined by this subclass and its parents. Inheritance’s ability
to define families of objects with identical interfaces (usually by inheriting from an abstract
class) is what allows polymorphism to work.

Implementation dependencies can cause problems when you’re trying to reuse a subclass.
Should any aspect of the inherited implementation not be appropriate for new problem do-
mains, the parent class must be rewritten or replaced by something more appropriate. This
dependency limits flexibility and ultimately reusability. One cure for this is to inherit only from
abstract classes, since they usually provide little or no implementation.

An abstract class is one whose main purpose is to define a common interface for its subclasses.
An abstract class will defer some or all of its implementation to operations defined in subclasses;
hence an abstract class cannot be instantiated. The operations that an abstract class declares
but doesn’t implement are called abstract operations. Classes that aren’t abstract are called
concrete classes.

Subclasses can refine and redefine behaviors of their parent classes. More specifically, a class
may override an operation defined by its parent class. Overriding gives subclasses a chance
to handle requests instead of their parent classes.

Class inheritance lets you define classes simply by extending other classes, making it easy to
define families of objects having related functionality. In contrast to class inheritance, interface
inheritance or subtyping describes when an object can be used in place of another.

A mixin class is a class that’s intended to provide an optional interface or methods to other
classes without having to be the parent class of those other classes. It’s similar to an abstract
class in that it’s not intended to be instantiated. Mixin classes require multiple inheritance.

1.4 Interfaces

Program to an interface, not an implementation
This principle of object-oriented design has two main benefits:

1. Clients remain unaware of the specific types of objects they use, as long as the objects
adhere to the interface that clients expect.

2. Clients remain unaware of the classes that implement these objects. Clients only know
about the abstract classes defining the interface. This greatly reduces implementation
dependencies between subsystems.

Don’t declare variables to be instances of particular concrete classes. Instead, commit only to
an interface defined by an abstract class. Though you will need to instantiate concrete classes
in order to specify a particular implementation somewhere in your system — the creational
patterns ensure that your system is written in terms of interfaces, not implementations.

1.5 Composition

Favor object composition over class inheritance.

The two most common techniques for reusing functionality in object-oriented systems are class
inheritance and object composition. Reuse by subclassing is often referred to as white-box
reuse. The term “white-box” refers to visibility: With inheritance, the internals of parent
classes are often visible to subclasses.

Object composition is an alternative to class inheritance. Here, new functionality is obtained
by assembling or composing objects to get more complex functionality. Object composition
requires that the objects being composed have well-defined interfaces. This style of reuse is
called black-box reuse, because no internal details of objects are visible. Objects appear only
as “black boxes.”

Because objects are accessed solely through their interfaces, we don’t break encapsulation.
Any object can be replaced at run-time by another as long as it has the same type. Moreover,
because an object’s implementation will be written in terms of object interfaces, there are
substantially fewer implementation dependencies.

Additionally, favoring object composition over class inheritance helps you keep each class en-
capsulated and focused on one task. Your classes and class hierarchies will remain small and
will be less likely to grow into unmanageable monsters. On the other hand, a design based
on object composition will have more objects (if fewer classes), and the system’s behavior will
depend on their inter relationships instead of being defined in one class.

1.6 Delegation

Delegation is a way of making composition as powerful for reuse as inheritance. In delegation,
two objects are involved in handling a request: a receiving object delegates operations to its
delegate. This is analogous to subclasses deferring requests to parent classes. Delegation is an
extreme example of object composition. It shows that you can always replace inheritance with
object composition as a mechanism for code reuse.

For example, instead of making class Window a subclass of Rectangle (because windows happen
to be rectangular), the Window class might reuse the behavior of Rectangle by keeping a
Rectangle instance variable and delegating Rectangle-specific behavior to it. In other words,
instead of a Window being a Rectangle, it would have a Rectangle and may call the Area
method.

The main advantage of delegation is that it makes it easy to compose behaviors at run-time
and to change the way they’re composed. Our window can become circular at run-time simply
by replacing its Rectangle instance with a Circle instance, assuming Rectangle and Circle have
the same type.

Delegation has a disadvantage it shares with other techniques that make software more flexible
through object composition: Dynamic, highly parameterized software is harder to understand
than more static software.There are also run-time inefficiencies, but the human inefficiencies
are more important in the long run. Delegation is a good design choice only when it simplifies
more than it complicates.

1.7 Parameterized Types

Parameterized types give us a third way (in addition to class inheritance and object compo-
sition) to compose behavior in object-oriented systems. This technique lets you define a type
without specifying all the other types it uses. The unspecified types are supplied as parame-
ters at the point of use. For example, a List class is parameterized by the type of elements it
contains.

1.8 Run-Time and Compile-Time Structures

Object composition lets you change the behavior being composed at run-time, but it also re-
quires indirection and can be less efficient. Inheritance lets you provide default implementations
for operations and lets subclasses override them. Parameterized types let you change the types
that a class can use. But neither inheritance nor parameterized types can change at run-time.

Many design patterns (in particular those that have object scope) capture the distinction be-
tween compile-time and run-time structures explicitly. Composite and Decorator patterns are
especially useful for building complex run-time structures. Observer involves run-time struc-
tures that are often hard to understand unless you know the pattern. Chain of Responsibility
also results in communication patterns that inheritance doesn’t reveal. In general, the run-time
structures aren’t clear from the code until you understand the patterns.

1.9 SOLID Principles

e Single-responsibility principle — A class should only have a single responsibility, that
is, only changes to one part of the software’s specification should be able to affect the
specification of the class.

e Open—closed principle — Software entities should be open for extension, but closed for
modification.

e Liskov substitution principle — Objects in a program should be replaceable with
instances of their subtypes without altering the correctness of that program.

e Interface segregation principle — Many client-specific interfaces are better than one
general-purpose interface.

e Dependency inversion principle — One should depend upon abstractions, not concre-
tions.

2 Design Patterns

We classify design patterns by two criteria. The first criterion, called purpose, reflects what
a pattern does. Patterns can have either creational, structural, or behavioral purpose.
Creational patterns concern the process of object creation. Structural patterns deal with the
composition of classes or objects. Behavioral patterns characterize the ways in which classes
or objects interact and distribute responsibility.

The second criterion, called scope, specifies whether the pattern applies primarily to classes or
to objects. Class patterns deal with relationships between classes and their subclasses. These
relationships are established through inheritance, so they are static — fixed at compile-time.
Object patterns deal with object relationships, which can be changed at run-time and are more
dynamic. Almost all patterns use inheritance to some extent. So the only patterns labeled
“class patterns” are those that focus on class relationships. Note that most patterns are in the
Object scope.

Creational class patterns defer some part of object creation to subclasses, while Creational
object patterns defer it to another object. The Structural class patterns use inheritance to
compose classes, while the Structural object patterns describe ways to assemble objects. The
Behavioral class patterns use inheritance to describe algorithms and flow of control, whereas
the Behavioral object patterns describe how a group of objects cooperate to perform a task
that no single object can carry out alone

Each design pattern lets some aspect of a system’s structure vary independently of other aspects,
thereby making a system more robust to a particular kind of change.

1. Creating an object by specifying a class explicitly —
Avoid with: Abstract Factory, Factory Method, Prototype.
2. Dependence on specific operations —
Avoid with: Chain of Responsibility, Command.
3. Dependence on hardware and software platform —
Avoid with: Abstract Factory, Bridge.
4. Dependence on object representations or implementations —
Avoid with: Abstract Factory, Bridge, Memento, Proxy.
5. Algorithmic dependencies —
Avoid with: Builder, Iterator, Strategy, Template Method , Visitor.
6. Tight coupling —

Avoid with: Abstract Factory, Bridge, Chain of Responsibility, Command, Facade, Me-
diator, Observer.

7. Extending functionality by subclassing —
Avoid with: Bridge, Chain of Responsibility, Composite, Decorator, Observer, Strategy.
8. Inability to alter classes conveniently —

Avoid with: Adapter, Decorator, Visitor.

Purpose Design Pattern Aspectis) That Can Vary
Creational | Abstract Factory (87) families of product objects
Builder (97) how a composite object gets created
Factory Method (107) subclass of object that is instantiated
Prototype (117) class of object that is instantiated
Singleton (127) the sole instance of a class
Structural | Adapter (135) interface to an object
Bridge (151) implementation of an object
Compuosite (163) structure and composition of an object
Decorator (175 iliti i
i Witho subclassing
Facade (185) interface to a subsystem
Flyweight {195) storage costs of objects
Proocy (207} how an object is accessed; its location
Behavioral | Chain of Responsibility (223) | object that can fulfill a request
Command (233) when and how a request is fulfilled
Interpreter (243) grammar and interpretation of a language
[terator (257) maggmgatz‘s elements are accessed,
Mediator (273) how and which objects interact with
each other
Memento (283) what private information is stored outside
an object, and when
Observer (293) number of objects that d d on another
object; how the dependent objects stay
up to date
State (305) states of an object
Strategy {315) an algorithmn
Template Method (325) steps of an algorithm
St e

Table 1.2: Design aspects that design patterns let you vary

2.1 Creational Patterns

2.1.1 Abstract Factory *

Provide an interface for creating families of related or dependent objects without specifying
their concrete classes.

Applicability

Use the Abstract Factory pattern when

e a system should be independent of how its products are created, composed, and repre-
sented.

e a system should be configured with one of multiple families of products.

e a family of related product objects is designed to be used together, and you need to
enforce this constraint.

e you want to provide a class library of products, and you want to reveal just their interfaces,
not their implementations.

Consequences
The Abstract Factory pattern has the following benefits and liabilities:

It isolates concrete classes.

It makes exchanging product families easy.

It promotes consistency among products.

Supporting new kinds of products is difficult.

CreateProductAf)
CreateProduchE()

ConcreteFactoryl - ConcreteFactory2 = S

CreateProduslAl
CreatePradusiB()

2.1.2 Builder

Separate the construction of a complex object from its representation so that the same con-
struction process can create different representations.

Applicability

Use the Builder pattern when

e the algorithm for creating a complex object should be independent of the parts that make
up the object and how they’re assembled.

e the construction process must allow different representations for the object that’s con-
structed.

Consequences
e It lets you vary a product’s internal representation.
e It isolates code for construction and representation.

e It gives you finer control over the construction process.

Diector | puider [outder]
Construet() o | BuifdPart()

rarbgﬂ!lggpct; l_':ds;n.lcture {
ildar—=BuildPart{)
) ConcreteBullder Product

BuildPart()
GetResult])

2.1.3 Factory Method *
Define an interface for creating an object, but let subclasses decide which class to instantiate.
Factory Method lets a class defer instantiation to subclasses.
Applicability
Use the Factory Method pattern when
e a class can’t anticipate the class of objects it must create.
e a class wants its subclasses to specify the objects it creates.

e classes delegate responsibility to one of several helper subclasses, and you want to localize
the knowledge of which helper subclass is the delegate.

Consequences

Factory methods eliminate the need to bind application-specific classes into your code. The
code only deals with the Product interface; therefore it can work with any user-defined Con-
creteProduct classes.

A potential disadvantage of factory methods is that clients might have to subclass the Creator
class just to create a particular ConcreteProduct object. Subclassing is fine when the client
has to subclass the Creator class anyway, but otherwise the client now must deal with another
point of evolution.

Factory Method has the additional consequences:
e Provides hooks for subclasses.
e Connects parallel class hierarchies.

Creator

toryMethodi) ‘ —
:J':;lwr:;ll:ammth:un(}J [E—— _ | product = FactoryMethod() |

ConcrateProduct [----=--=-1 Con

FactoryMethod() O ====== -| ratum new c::ncratammmﬂ

10

2.1.4 Prototype

Specify the kinds of objects to create using a prototypical instance, and create new objects by

copying this prototype.
Applicability
Use the Prototype pattern

e when a system should be independent of how its products are created, composed, and

represented

e when the classes to instantiate are specified at run-time, for example, by dynamic loading.
e to avoid building a class hierarchy of factories that parallels the class hierarchy of products.

e when instances of a class can have one of only a few different combinations of state.

Consequences

Prototype has many of the same consequences that Abstract Factory and Builder have: It
hides the concrete product classes from the client, thereby reducing the number of names
clients know about. Moreover, these patterns let a client work with application-specific classes

without modification.

Additional benefits of the Prototype pattern include

e Adding and removing products at run-time.

Reduced subclassing.

Clisnt prototype

Specifying new objects by varying values

Specifying new objects by varying structure.

Configuring an application with classes dynamically.

= Frototype

Oparation() ¢

p= prﬂnﬁpﬂ—}clanu[]g‘

Clonay}

A

ConcreteProlotypel ConcreleProiotype2
Clone() ¢ Clone{) ¢
i i
refum copy of self redturm copy of self

11

2.1.5 Singleton

Ensure a class only has one instance, and provide a global point of access to it.
Applicability
Use the Singleton pattern when

e there must be exactly one instance of a class, and it must be accessible to clients from a
well-known access point.

e when the sole instance should be extensible by subclassing, and clients should be able to
use an extended instance without modifying their code.

Consequences
The Singleton pattern has several benefits:

o Controlled access to sole instance.

Reduced name space.

Permits refinement of operations and representation.

Permits a variable number of instances.

More flexible than class operations.

Singleton

static Instanca() O --q=====-=-=-4 relum uniquainstanca 1
SingletonOperation()
GetSingletonDatal)

static uniguelnstance
singletonDala

12

2.2 Structural Patterns
2.2.1 Adapter *
Convert the interface of a class into another interface clients expect. Adapter lets classes work
together that couldn’t otherwise because of incompatible interfaces.
Applicability
Use the Adapter pattern when
e you want to use an existing class, and its interface does not match the one you need.

e you want to create a reusable class that cooperates with unrelated or unforeseen classes,
that is, classes that don’t necessarily have compatible interfaces.

e (object adapter only) you need to use several existing subclasses, but it’s unpractical to
adapt their interface by subclassing every one. An object adapter can adapt the interface
of its parent class

Consequences
Class and object adapters have different trade-offs. A class adapter
e adapts Adaptee to Target by committing to a concrete Adaptee class.
e lets Adapter override some of Adaptee’sbehavior, since Adapter is a subclass of Adaptee.
e introduces only one object, no additional pointer indirection is needed for the adaptee
An object adapter
e lets a single Adapter work with many Adaptees

e makes it harder to override Adaptee behavior

A class adapter uses multiple inheritance to adapt one interface to another:

Com] [==

Request(] SpecificRequest()

A

—l | {implementation)
Adapter
Request() O~ =-=====~- SpecificRequ k‘

An object adapter relies on object composition:

o o =

Requesi) SpecificRequest()
Acoptar adaptas
Flequestf) @ f---=------- adaptes—>SpecificRequest() E1

13

2.2.2 Bridge

Decouple an abstraction from its implementation so that the two can vary independently.

Applicability

Use the Bridge pattern when

you want to avoid a permanent binding between an abstraction and its implementation.
both the abstractions and their implementations should be extensible by subclassing.

changes in the implementation of an abstraction should have no impact on clients; that
is, their code should not have to be recompiled.

you have a proliferation of hierarchical classes (“nested generalizations”)

you want to share an implementation among multiple objects, and this fact should be
hidden from the client.

Consequences

The Bridge pattern has the following consequences:

Decoupling interface and implementation.
Improved extensibility.

Hiding implementation details from clients.

i
*1 Abstraction ¢_rnp ~= [mplementor
Operation{) ¢ Operationirmp()
imp—:meHmln‘\p{H
I |
Concretal memtord ConcretelmplementorB
RefinedAbstraction i ——
Cparationimp() Oparaticnimps)

14

2.2.3 Composite *

Compose objects into tree structures to represent part-whole hierarchies. Composite lets clients

treat individual objects and compositions of objects uniformly.

Applicability

Use the Composite pattern when

e you want to represent part-whole hierarchies of objects.

e you want clients to be able to ignore the difference between compositions of objects and

individual objects

Consequences

The Composite pattern

e defines class hierarchies consisting of primitive objects and composite objects

e makes the client simple.

e makes it easier to add new kinds of components.

e can make your design overly general.

Client

children

Leaf Composite

Oparation() Qpearation() @ -----
Add(Componeant)
Remaove(Companant)
GetChild{int)

e

15

forall g in children
Q. ration();

il

2.2.4 Decorator *

Attach additional responsibilities to an object dynamically. Decorators provide a flexible alter-
native to subclassing for extending functionality.

Applicability

Use Decorator

e to add responsibilities to individual objects dynamically and transparently, that is, with-
out affecting other objects.

e for responsibilities that can be withdrawn.
e when extension by subclassing is impractical.
Consequences
The Decorator pattern has at least two key benefits and two liabilities:
e More flexibility than static inheritance.
e Avoids feature-laden classes high up in the hierarchy.
e A decorator and its component aren’t identical.

e Lots of little objects.

ConcreteComponent
Oparation() camponsnt-=Oparation()
I]
ConcreteDecoratorA ConcreteDecoratorB
Ciperation() Operation) O---==-=q-==-=-= Damm'aegﬁmﬁm”:
—] AddadBehavior()
addedState

16

2.2.5 Facade
Provide a unified interface to a set of interfaces in a subsystem. Facade defines a higher-level
interface that makes the subsystem easier to use.
Applicability
Use the Facade pattern when
e you want to provide a simple interface to a complex subsystem

e there are many dependencies between clients and the implementation classes of an ab-
straction

e you want to layer your subsystems.
Consequences
The Facade pattern offers the following benefits:

e It shields clients from subsystem components, thereby reducing the number of objects
that clients deal with and making the subsystem easier to use.

e It promotes weak coupling between the subsystem and its clients.

e It doesn’t prevent applications from using subsystem classes if they need to. Thus you
can choose between ease of use and generality

[eree |
Facade
subsysfem classes h

17

2.2.6 Flyweight

Use sharing to support large numbers of fine-grained objects efficiently.
Applicability

The Flyweight pattern’s effectiveness depends heavily on how and where it’s used. Apply the
Flyweight pattern when all of the following are true:

e An application uses a large number of objects

Storage costs are high because of the sheer quantity of objects.

Most object state can be made extrinsic.

e Many groups of objects may be replaced by relatively few shared objects once extrinsic
state is removed.

The application doesn’t depend on object identity. Since flyweight objects may be shared,
identity tests will return true for conceptually distinct objects.

Consequences

Flyweights may introduce run-time costs associated with transferring, finding, and/or comput-
ing extrinsic state. However, such costs are offset by space savings, which increase as more
flyweights are shared.

FlywabghtFactory ‘._,_“f"'#" -._-JW
GiedFhparasigha{lery) ? OparationfaxtrinsicSate)
i k i
Fehan Gusing Mywelght,
}ulse |
tm maw flyweignt;

o
acdd it o pool of fiyea
raham el naw

ConcreteFlyweight UneharedConcreisFlywelght
Opamtian{einsciiase) Cparation] sirinsicSiake)
irtrirgicStnt aliStaim

Client

18

2.2.7 Proxy

Provide a surrogate or placeholder for another object to control access to it.
Applicability

Proxy is applicable whenever there is a need for a more versatile or sophisticated reference to an
object than a simple pointer. Here are several common situations in which the Proxy pattern
is applicable:

e A remote proxy provides a local representative for an object in a different address space.
e A virtual proxy creates expensive objects on demand.

e A protection proxy controls access to the original object. Protection proxies are useful
when objects should have different access rights.

e A smart reference is a replacement for a bare pointer that performs additional actions
when an object is accessed.

Consequences

The Proxy pattern introduces a level of indirection when accessing an object. The additional
indirection has many uses, depending on the kind of proxy:

e A remote proxy can hide the fact that an object resides in a different address space.
e A virtual proxy can perform optimizations such as creating an object on demand.

e Both protection proxies and smart references allow additional housekeeping tasks when
an object is accessed

i 5y
= Subject
Request()
P L L —
Request() Request)) o ——l realSubject->Aequest(); |

Here's a possible object diagram of a proxy structure at run-time:

! aClient 'l rm—'\]
subject @—yp - Tulsi:m: — [aReaiSubject)

19

2.3 Behavioural Patterns
2.3.1 Chain of Responsibility

Avoid coupling the sender of a request to its receiver by giving more than one object a chance
to handle the request. Chain the receiving objects and pass the request along the chain until
an object handles it.

Applicability
Use Chain of Responsibility when
e more than one object may handle a request, and the handler isn’t known a priori.

e you want to issue a request to one ofseveral objects without specifying the receiver ex-
plicitly.

e the set of objects that can handle a request should be specified dynamically.
Consequences
Chain of Responsibility has the following benefits and liabilities:

e Reduced coupling.

e Added flexibility in assigning responsibilities to objects

e Receipt isn’t guaranteed.

SUCCEES0F

Client Handher

HandieRequest()

A

ConcrateHandker1 ConcroteHandler2

HandleRequest() HandleRequesti}

A typical object structure might look like this:

= aConcrateHandler
aHandor o mder) ((ecomoretatiandier)
SUCCESSOT W -
L————/ '-Lhmumw ,'

20

2.3.2 Command

Encapsulate a request as an object, thereby letting you parameterize clients with different
requests, queue or log requests, and support undo-able operations.

Applicability

Use the Command pattern when you want to

Consequences

parameterize objects by an action to perform.

specify, queue, and execute requests at different times.

support undo.

support logging changes so that they can be reapplied in case of a system crash.

structure a system around high-level operations built on primitives operations.

The Command pattern has the following consequences:

e Command decouples the object that invokes the operation from the one that knows how

to perform it.

o Commands are first-class objects. They can be manipulated and extended like any other

object.

e You can assemble commands into a composite command.

o It’s easy to add new Commands, because you don’t have to change existing classes.

Client

e e Command

L

invoker
Exscute(}
Receiver ¢
actony e [concreteCommand
Exgcutef) O -====== M= mueivar—:-ﬁcﬂ'm{ﬂ
* state

21

2.3.3 Interpreter

Use the Interpreter pattern when there is a language to interpret, and you can represent state-

ments in the language as abstract syntax trees.

Applicability

Use the Command pattern when you want to

e the grammar is simple.

becomes large and unmanageable.

e efficiency is not a critical concern. The most efficient interpreters are usually not im-
plemented by interpreting parse trees directly but by first translating them into another

form.

Consequences

For complex grammars, the class hierarchy for the grammar

The Interpreter pattern has the following benefits and liabilities:

e It’s easy to change and extend the grammar

e Implementing the grammar is easy.

e Complex grammars are hard to maintain.

e Easier to add new ways to interpret expressions.

Client

e Abﬂrﬂcﬁm

interpret{Contest)

A

—

TerminalExpression

NonterminalExpression

Irtarprat(Context)

Interpret(Contend)

22

2.3.4 TIterator

Provide a way to access the elements of an aggregate object sequentially without exposing its
underlying representation.

Applicability

Use the Iterator pattern

e to access an aggregate object’s contents without exposing its internal representation (i.e.
a list).

e to support multiple traversals of aggregate objects.

e to provide a uniform interface for traversing different aggregate structures (that is, to
support polymorphic iteration)

Consequences

The Iterator pattern has three important consequences:
e It supports variations in the traversal of an aggregate
e Iterators simplify the Aggregate interface.

e More than one traversal can be pending on an aggregate.

Aggregate T_......_... . Sy el harator
S SE— e

i
()
Higrmy)

Concretelterator

ConcreteAggregate

Createlterator() ¢
i

FEALIMT NEW Eummmmwr[mialﬁ

23

2.3.5 Mediator

Define an object that encapsulates how a set of objects interact. Mediator promotes loose
coupling by keeping objects from referring to each other explicitly, and it lets you vary their
interaction independently.

Applicability
Use the Mediator pattern when

e a set of objects communicate in well-defined but complex ways.The resulting interdepen-
dencies are unstructured and difficult to understand.

e reusing an object is difficult because it refers to and communicates with many other
objects.

e a behavior that’s distributed between several classes should be customizable without a
lot of subclassing

Consequences
The Mediator pattern has the following benefits and drawbacks:

e It limits subclassing.

It decouples colleagues.

It simplifies object protocols.

It abstracts how objects cooperate.

It centralizes control.

mediator
Q

.JI ConcreteColl 1| J...{ c-uncru-colugml

A typical object structure might look like this:

[

24

2.3.6 Memento

Without violating encapsulation, capture and externalize an object’s internal state so that the
object can be restored to this state later.

Applicability

Use the Memento pattern when

e a snapshot of (some portion of) an object’s state must be saved so that it can be restored
to that state later.

e a direct interface to obtaining the state would expose implementation details and break
the object’s encapsulation.

Consequences
The Memento pattern has several consequences:

e Preserving encapsulation boundaries.

It simplifies Originator.

e Using mementos might be expensive.

Defining narrow and wide interfaces.

Hidden costs in caring for mementos.

Originator g Memento | TR etaicer
SatMemento(Memento m) ¢ GatState()
CreateMameanto{y ¢ H SatStatal)
state : ' state
H 1
i i
raturm new Mmmma[smta]sﬁ state = m->=GetState()

25

2.3.7 Observer *

Define a one-to-many dependency between objects so that when one object changes state, all
its dependents are notified and updated automatically.

Applicability

Use the Observer pattern in any of the following situations:

e When an abstraction has two aspects, one dependent on the other. Encapsulating these
aspects in separate objects lets you vary and reuse them independently.

e When a change to one object requires changing others, and you don’t know how many
objects need to be changed.

e When an object should be able to notify other objects without making assumptions about
who these objects are.In other words, you don’t want these objects tightly coupled.

Consequences

The Observer pattern lets you vary subjects and observers independently. Further benefits and
liabilities of the Observer pattern include the following:

e Abstract coupling between Subject and Observer.
e Support for broadcast communication.

e Unexpected updates.

s observers g g
Attach(Observer) i
Detach{Observer) .
i for all o in coservers |
Motify(} o -d. a->Updale() A:-\‘
]
le}‘ ConcreteObserver
ConcreteSub) subject = et
=) subject->GetState()
o===f-
e roum sjocsiat | oserverSiate
subjectState

26

2.3.8 State

Allow an object to alter its behavior when its internal state changes. The object will appear

to change its class.

Applicability

Use the State pattern in either of the following cases:

e An object’s behavior depends on its state, and it must change its behavior at run-time

depending on that state.

e Operations have large, multipart conditional statements that depend on the object’s state.

Consequences

The State pattern has the following consequences:

e It localizes state-specific behavior and partitions behavior for different states.

e It makes state transitions explicit.

e State objects can be shared.

atate
-

Context
Request) @

state—>Handle() ‘ﬂ

State

Handig()
ConcreteStated ConcreteStateB
Handial) Handhe{)

27

2.3.9 Strategy *

Define a family of algorithms, encapsulate each one, and make them interchangeable. Strategy

lets the algorithm vary independently from clients that use it.

Applicability

Use the Strategy pattern when

e many related classes differ only in their behavior. Strategies provide a way to configure

a class with one of many behaviors.

e you need different variants of an algorithm.

e an algorithm uses data that clients shouldn’t know about.

e a class defines many behaviors, and these appear as multiple conditional statements in

its operations.

Consequences

The Strategy pattern has the following benefits and drawbacks:

e Families of related algorithms.

An alternative to subclassing.

A choice of implementations.

Strategies eliminate conditional statements.

Clients must be aware of different Strategies.

e Communication overhead between Strategy and Context.

Increased number of objects.

Context {:3" = Siralegy

Contextintariace() Algonithminterface(}
ConcreteStrategyA ConcreteStrategyB ConcreteSirategyC
algorithmintertace) Algorithrminterface() Algorithmintarface() '

28

2.3.10 Template Method *

Define the skeleton of an algorithm in an operation, deferring some steps to subclasses. Tem-
plate Method lets subclasses redefine certain steps of an algorithm without changing the algo-
rithm’s structure.

Applicability
The Template Method pattern should be used

e to implement the invariant parts of an algorithm once and leave it up to subclasses to
implement the behavior that can vary.

e when common behavior among subclasses should be factored and localized in a common
class to avoid code duplication.

e to control subclasses extensions.
Consequences

Template methods are a fundamental technique for code reuse. Template methods lead to an
inverted control structure. This refers to how a parent class calls the operations of a subclass
and not the other way around.

Template methods call the following kinds of operations:
e concrete operations (either on the ConcreteClass or on client classes)
e concrete AbstractClass operations (i.e., operations that are generally useful to subclasses)
e primitive operations (i.e., abstract operations)
e factory methods

e hook operations, which provide default behavior that subclasses can extend if necessary.
A hook operation often does nothing by default.

TemplatsMethod() O- - === ===~ BrimitivaOperationt()
PrimitiveCiperationz2) ?ﬁﬁmﬂmraﬂnnﬂl

ConcreteClass

PrimitiveOparation 1()
PrimitiveOparation2()

29

2.3.11 Visitor

Represent an operation to be performed on the elements of an object structure. Visitor lets
you define a new operation without changing the classes of the elements on which it operates.
Applicability

Use the Visitor pattern when

e an object structure contains many classes of objects with differing interfaces, and you
want to perform operations on these objects that depend on their concrete classes.

e many distinct and unrelated operations need to be performed on objects in an object
structure, and you want to avoid “polluting” their classes with these operations.

e the classes defining the object structure rarely change, but you often want to define new
operations over the structure.

Consequences

Some of the benefits and liabilities of the Visitor pattern are as follows:
e Visitor makes adding new operations easy.
e A visitor gathers related operations and separates unrelated ones.
e Adding new ConcreteElement classes is hard.

e Visiting across class hierarchies.

= Wisitor

VisitConcreteElemantA{ConcrefaElernentA)
VisitConcreteElementB| ConcrefeElenentB)

A

ConcreteVisitort ConcreteVisitor2

VisitConcrataElementa{CancreteElemanta) VisitConcreteElementA{ConcretaElementA)
VishCeoncreteElamentB{ConcrateElementB) VisitCencreteElementB{ConcrataElemeant B)

| ObjectStructure Elermant
Accepl{Visitor)
| |
ConcreteElementA ConcreteElementB
Accapt{Visitor v} =] Accepli{Visitor v) @
OperationA() ¥ OperationB() -
v—:-wsitﬁomm!aElmrlAttnia}b“ | v—;uiaitCmcrelsElsmethlhs}hﬁ

30

References

[1] Gamma, E., Helm, R., Johnson, R., Vlissides, J. M. (1994). Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional. ISBN: 0201633612

31

	Object-Oriented Design
	Classes, Objects and Interfaces
	Polymorphism
	Inheritence
	Interfaces
	Composition
	Delegation
	Parameterized Types
	Run-Time and Compile-Time Structures
	SOLID Principles

	Design Patterns
	Creational Patterns
	Abstract Factory *
	Builder
	Factory Method *
	Prototype
	Singleton

	Structural Patterns
	Adapter *
	Bridge
	Composite *
	Decorator *
	Facade
	Flyweight
	Proxy

	Behavioural Patterns
	Chain of Responsibility
	Command
	Interpreter
	Iterator
	Mediator
	Memento
	Observer *
	State
	Strategy *
	Template Method *
	Visitor

