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History of Cryptography

The word cryptography, derived from the
Greek words kryptós, meaning ”hidden”, and
graphein, meaning ”writing”, can broadly be un-
derstood as such - it is the practice of hiding the
meaning or content of communications. More pre-
cisely, an encrypted message is typically made to
be indistinguishable from random noise in an ef-
fort to prevent a third party adversary or the gen-
eral public from ascertaining any useful informa-
tion from the original private message.

In 1883, the Dutch cryptographer Auguste
Kerckhoffs formulated six design axioms for mili-
tary ciphers. They are now known as Kerckhoffs’
principles [1] and are expressed as follows:

1. The system must be practically, if not math-
ematically, indecipherable;

2. It should not require secrecy, and it should
not be a problem if it falls into enemy hands;

3. It must be possible to communicate and
remember the key without using written
notes, and correspondents must be able to
change or modify it at will;

4. It must be applicable to telegraph commu-
nications;

5. It must be portable, and should not require
several persons to handle or operate;

6. Lastly, the system must be easy to use and
should not be stressful or require its users to
know and comply with a long list of rules.

The second principle has proven to be par-
ticularly important in modern cryptosystems and
their use of secret keys. It expresses the notion
that despite an attacker’s access to or familiarity
with a cryptosystem, it is critical that they are
still unable to determine a given message without
solving for a computationally infeasible problem.

A cryptosystem can be more rigorously de-
scribed with the following sets and functions [2]:

• Σ: The alphabet

i.e. Σ = {a, ..., Z, 0, ..., 9} or Σ = {0, 1}

• M ⊆ Σ∗: the message space

• C ⊆ Σ∗: the cyphertext space

• K: the keyspace

• ∀e ∈ K,Ee(x) : M → C

Ee(x) is a bijective encryption function

• ∀d ∈ K,Dd(x) : C →M

Dd(x) is a bijective decryption function

• ∀e ∈ K, ∃d ∈ K such that Dd = E−1
e

That is, ∀m ∈M,Dd(Ee(m)) = m

The proliferation of computers and communi-
cations systems has inspired an urgent demand
to protect information in digital forms from an
increasingly computationally powerful adversary.
A groundbreaking development came in 1976 with
the work of Diffie and Hellman [3] and their rev-
olutionary concept of ”public-key cryptography”
and an ingenious method for a key exchange, the
security of which relies on the infeasibility of the
discrete logarithm problem. Then in 1978, Rivest,
Shamir, and Adleman discovered the first com-
plete public-key encryption and signature scheme,
now known as RSA [4]. The RSA algorithm also
relies on a mathematically hard problem, the in-
feasibility of factoring large integers.
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Diffie and Helman:
‘New Directions in Cryptography’

The conceptualization of the public-key cryp-
tosystem, briefly described above, laid the foun-
dation for the development of the RSA method.
The 1978 paper directly motivated the RSA re-
search, since Diffie and Helman had presented the
idea but did not formulate any practical imple-
mentation of a concrete system.

In particular, Diffie and Hellman introduced
the concept of ”trap-door one-way” functions E
and D, to be used for encryption and decryption,
but did not present any examples. These func-
tions are considered “one-way” because they are
easy to compute in one direction but are very diffi-
cult to compute in the other direction. They are
referred to as “trapdoor” functions because the
inverse functions are in fact easy to compute after
certain secret “trap-door” information is known.

The RSA Method

Suppose that we have A and B (also known as
Alice and Bob) who are two users of a public-key
cryptosystem.

(unsecured channel)

Alice -----+-----+------- Bob

| |

| |

| Mallory

| (malicious attacker)

Eve

(eavesdropper)

Alice creates a public and private key pair (ke, kd)
which have the feature that knowing one does not
easily lead to knowing the other. Alice publishes
her public key ke and keeps her private key se-
curely hidden. ke and kd are inverses with respect
to the RSA(key,message) function, that is

RSA(kd,RSA(ke,m))

= RSA(ke,RSA(kd,m))
= m

To compute these public and private keys,

• Alice chooses two large primes, p, q ∈ Z and
some value e ∈ Z which is relatively prime
to (p− 1)(q − 1).

• Next, Alice finds a natural number d such
that e · d ≡ 1 mod (p− 1)(q − 1).

• Alice now has private key (pq, d) and public
key (pq, e).

To encrypt/decrypt a shared message,

• Suppose Bob has a message M ∈ N and
wants to encrypt and send it to Alice.

• Bob computes C ≡M e (mod pq) and sends
the encrypted message C to Alice.

• Alice computes M ≡ Cd (mod pq), Bob’s
decrypted message.

Theorems and Identities

The proof of correctness provided in the RSA
paper relies on Fermat’s Little Theorem, which
states that if p is prime and p does not divide an
integer a then,

ap−1 ≡ 1 (mod p)

and an identity from Euler’s theorem, which
states that if n and M (a message in our case)
are coprime positive integers, then

Mϕ(n) ≡ 1 (mod n) (1)

where ϕ(n) is Euler’s Totient function. ϕ(n) gives
the number of positive integers less than n which
are relatively prime to n. The following proper-
ties of the Euler totient function are applied:

for prime numbers p,

ϕ(p) = p− 1

and if n = pq, then

ϕ(n) = ϕ(p) · ϕ(q)

= (p− 1) · (q − 1) (2)

= n− (p + q) + 1

Also, since d is relatively prime to ϕ(n), it
must have a multiplicative inverse e such that

e · d ≡ 1 (mod ϕ(n)) (3)
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Proof Of Correctness

Proof. Recall that the encryption and decryption
algorithms E and D for a message M and a cypher-
text C are:

C ≡ E(M) ≡M e (mod n),

D(C) ≡ Cd (mod n).

We can prove that deciphering works correctly
if e and d are chosen as shown previously, by prov-
ing that the following equations hold:

D(E(M) = M. (4)

E(D(M) = M. (5)

So,

D(E(M) ≡ (E(M))d ≡ (M e)d (mod n)

= M e·d (mod n)

E(D(M)) ≡ (D(M))e ≡ (Md)e (mod n)

= M e·d (mod n)

We know that M e·d can equivalently be ex-
pressed as Mk·ϕ(n)+1 (mod n) for some k ∈ Z.
From (1), we see that for all M such that p does
not divide M ,

Mp−1 ≡ 1 (mod p)

and since (p− 1) divides ϕ(n), we have

Mk·ϕ(n)+1 ≡M (mod p).

A similar argument follows for prime q,

Mk·ϕ(n)+1 ≡M (mod q).

This is trivially true when M ≡ 0 (mod p). There-
fore, the previous two equations together imply
that for all M ,

M e·d ≡Mk·ϕ(n)+1 ≡M (mod q).

This implies the encryption/decryption equa-
tions (4) and (5) hold for all M , 0 ≤ M < n.
Therefore E and D are inverse functions.

Unprovable Security

The security of the RSA cryptosystem rests on
the difficulty of factoring large numbers and what
is known as the RSA problem. The RSA prob-
lem is defined as the task of recovering a value
M such that C ≡ M e (mod n), where (n, e) is
an RSA public key and C is the cyphertext. To
break RSA, an attacker would need to recover
the prime factors of n into p and q, and compute
lcm(p − 1, q − 1), allowing for the determination
of d from e.

Full decryption of an RSA ciphertext is
thought to be infeasible on the assumption that
both of these problems are hard and that no such
polynomial-time algorithm for factoring large in-
tegers on a classical computer has yet been found,
though it has not been proven that none exists.

Modern Applications:
Digital Signing and Key Exchange

Suppose Alice wants to send a signed message to
Bob such that Bob can verify the origin of the
message. A hash function, which is a one way
function from a large finite strings to a smaller,
fixed length string can be used to produce a hash
value of the message. Alice can encrypt this value
with her private key and attach it as a ”signature”
to the message. Bob can use the same hash al-
gorithm in conjunction with Alice’s public key to
decrypt and compare it with the message’s actual
hash value. If the two values agree, he knows
that the author of the message was in possession
of Alice’s private key, and that the message has
not been tampered with, since any modification
would result in a different hash value.

Unfortunately, RSA calculations tend to be
too time consuming for most communication pur-
poses and decryption of large messages becomes
intolerably expensive. This is common for what’s
known as asymmetric encryption, where the en-
cryption and decryption keys differ. Typically
RSA is used to exchange a session key for a
more efficient algorithm which uses symmetric
keys where ’essentially’ the same key is used to
encrypt and decrypt, like Data Encryption Stan-
dard (DES) and Cipher Block Chaining (CBC).
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