
An Introduction to
Machine Learning

Luke Pereira - March 2017

Learning From Examples

“A good stock of examples, as large as possible, is indispensable for a thorough under-
standing of any concept, and when I want to learn something new, I make it my first job
to build one.” - Paul Halmos (Hungarian Mathematician, 1916)

Examinations into the nature of learning tend to be unfruitful or ambigous since many of the mecha-
nisms involved remain hidden in the subconsciousness while the actual knowledge, behaviors, or skills
are being acquired for the first time or are being modified and reinforced if already in existence. A
useful mode of thought which may assist us in grasping at these hidden processes is an investigation
into the minds of children as they learn, especially during their initial acquisition of language. Fur-
thermore, we may gain a clearer insight by compiling a “stock of examples” to consider. An early
examination of learning can be found in a passage of ‘The Confessions of St. Augustine’ (400 AD).

“When they (my elders) named some object, and accordingly moved towards something, I
saw this and I grasped that the thing was called by the sound they uttered when they meant to
point it out. Their intention was shewn by their bodily movements, as it were the natural
language of all peoples: the expression of the face, the play of the eyes, the movement
of other parts of the body, and the tone of voice which expresses our state of mind in
seeking, having, rejecting, or avoiding something. Thus, as I heard words repeatedly used
in their proper places in various sentences, I gradually learnt to understand what objects
they signified; and after I had trained my mouth to form these signs, I used them to express
my own desires.” [1]

From this we recognize early techniques involved in training a learner - that is, presenting an object
or entity along with a name or title. Combinations of data with their corresponding name is known
as labeled data and the process of training with labeled data is called supervised learning.
Wittgenstein, an Austrian born philosopher of mathematical logic and language, refers to St. Augus-
tine’s passage in his book, ‘Philosophical Investigations’ (1953), stating the following,

“A child uses such primitive forms of language when it learns to talk. Here the teaching
of language is not explanation, but training. This ostensive teaching of words can be said
to establish an association between the word and the thing. [...] When a child learns this
language, it has to learn the series, of ‘numerals’ a, b, c, ... by heart. And it has to learn
their use. Will this training include ostensive teaching of the words? Well, people will,
for example, point to slabs and count: “a, b, c slabs”. Something more like the ostensive
teaching of the words “block”, “pillar”, etc. would be the ostensive teaching of numerals
that serve not to count but to refer to groups of objects that can be taken in at a glance.
Children do learn the use of the first five or six cardinal numerals in this way.” [2]

1



Wittgenstein diverges from the notion of ‘ostensive teaching’ (a way of defining by direct demon-
stration, e.g., by pointing) of basic objects with their associated noun, and begins to examine the
teaching and learning of concepts that are implicit, in this case the ordinal numbers associated with a
set of objects. This process of discovering reoccurring patterns in data will become known as feature
learning and the method of teaching a concept without explicitly presenting labels along with data
will be called unsupervised learning.

In Alan Turing’s seminal paper, ‘Computing Machinery and Intelligence’ (1950), the analogy of teach-
ing a child is further developed from a cognitive process into an operational process, and thus into
the early stages of a mathematical formal system, where he famously describes what is now known as
the “Turing Test” and later the concept of “Learning Machines”.

“In the process of trying to imitate an adult human mind we are bound to think a good deal
about the process which has brought it to the state that it is in. [...] Instead of trying to
produce a programme to simulate the adult mind, why not rather try to produce one which
simulates the child’s? If this were then subjected to an appropriate course of education one
would obtain the adult brain. [...] We have thus divided our problem into two parts. The
child programme and the education process. These two remain very closely connected. We
cannot expect to find a good child machine at the first attempt. One must experiment with
teaching one such machine and see how well it learns.” [3]

Here, Turing is no longer merely examining the cognitive processes which occur in a humans mind, but
is proposing recreating them in simulation with digital computers. He continues to uncover many of
the characteristics which are being discovered in current sophisticated machine learning advancements.

“We normally associate punishments and rewards with the teaching process. Some simple
child machines can be constructed or programmed on this sort of principle. The machine
has to be so constructed that events which shortly preceded the occurrence of a punishment
signal are unlikely to be repeated, whereas a reward signal increased the probability of
repetition of the events which led up to it.” [3]

What Turing is describing is now referred to as reinforcement learning. This is where a program
navigates through a dynamic environment, which provides feedback in terms of reward and punish-
ment, with the goal of maximizing some cumulative reward.

After examining several examples of inquiries into learning, we are beginning to attain an under-
standing of the cognitive mechanisms of learning. This process of teaching from a large repository of
examples or data is fundamental in teaching machines as well. The transition from our ambiguous
cognitive interpretation into a precise operational and mathematical definition is outlined below:

“A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P if its performance at tasks in T, as measured by P, improves
with experience E.” [4]

We may now begin formally defining the leaning models used in modern machine learning.

2



Learning Models and Tasks

I. Supervised learning

A supervised learning algorithm analyzes labeled training data and produces an inferred function,
which can later be used for mapping new examples. An ideal scenario will allow for the algorithm
to correctly determine the class labels for unseen instances that it has not been trained on.

Given a set of N training examples of the form {(x1, y1), ..., (xN , yN)} such that xi is the feature
vector of the i-th example and yi is its label, a learning algorithm infers a function g : X → Y ,
where X is the input space and Y is the output space. The function g is an element of some
space of possible functions G, usually called the hypothesis space.

Some of the fundamental types of task which use supervised learning to train are the following:

– Classification

Inputs are divided into multiple classes, and the learning algorithm produces a model that
assigns unseen inputs to one or more of these classes. A common example of classification
taught to most students is the task of generating a program which can read handwritten
digits with high accuracy, typically trained from a large repository of labeled images in
the public domain known as MNIST. Two of the main algorithms used to solve general
classification problems are Support Vector Machines and Artificial Neural Networks, which
will later be examined in more detail. This task is typically approached with supervised
algorithms though it is possible to be completed without labelled data where the learner
instead aims to infer the classifications from clusters found in the structure of the data.

– Regression analysis

In regression, the algorithm attempts to ‘fit’ a function to a set of points and is then
able approximate or predict where some new input may map to. This technique is largely
inherited from statistics and probability theory, but is very much applicable to problems
found in machine learning. To demonstrate this task with a simple example, we could
consider plotting a collection of data on a graph where the x-axis is the height of a person
and the y-axis is their corresponding weight. Then, if we’re given a new height (x value)
as an input value we can make an educated prediction of the possible weight (y value)
on the curve. We can also think of the function as mapping to categories instead of real
numbers in a similar manner to classification. Common algorithms for Regression analysis
are Ordinary Least Squares Regression (OLSR) and Linear Regression.

Figure 1: Classification/Clustering Figure 2: Regression

3



II. Unsupervised learning

An unsupervised learning algorithm produces an inferred function which describes hidden struc-
ture found within a set of unlabeled data. Since the examples given to the learner are unlabeled,
there is no objective evaluation of the accuracy of the structure that is output from the algo-
rithm. Moreover, unlike in supervised learning where performance is usually evaluated with
respect to the ability to reproduce known knowledge, in unsupervised learning the key task is
the discovery of previously unknown knowledge. Some major tasks and algorithms used in this
model are the following:

– Clustering

This is the task of grouping a set of objects in such a way that objects in the same group
(known as a cluster) are more similar to each other than to those in other groups (clusters).
Unlike in classification, the groups are not known beforehand, making this an unsupervised
task. Systems designed to recommend new items based on a user’s tastes may use clustering
algorithms to predict a user’s preferences based on the preferences of other users in the
same cluster.

– Feature Learning

Also known as Representation Learning, this task aims to learn a feature: the transfor-
mation of raw data input into a representation that can later be effectively exploited in
machine learning tasks. It is frequently necessary to discover useful features or representa-
tions from raw data since traditional hand-crafted features often require expensive human
labor, rely on expert knowledge, and normally do not generalize well. In speech recogni-
tion, features for recognizing phonemes can include noise ratios, length of sounds, relative
power, filter matches and many others. In computer vision, there are a large number of
possible features, such as edges and objects.

III. Reinforcement learning

Reinforcement learning was initially inspired by work in behaviorist psychology studies, in an
attempt to examine how software agents should act in an environment to maximize their to-
tal reward. Reinforcement learning differs from standard supervised learning in that correct
input/output pairs are never presented, nor sub-optimal actions explicitly corrected. Further-
more, there is a focus on finding a balance between exploration of uncharted territory and
exploitation of current knowledge. The basic reinforcement learning model consists of:

i. A set of environment and agent states S.

ii. A set of actions A of the agent.

iii. Policies of transitioning from states to actions.

iv. Rules that determine the scalar immediate reward of a transition.

v. Rules that describe what the agent observes.

A reinforcement learning agent interacts with its environment in discrete time steps. At each
time t, the agent receives an observation ot, which often includes the reward rt. It will then
choose an action at from the set of possible actions A, which is then sent to the environment.
The environment moves to a new state st+1 and the reward rt+1 associated with the transition
(st, at, st+1) is determined. The goal of a reinforcement learning agent is to collect as much
reward as possible. The agent can choose any action as a function of the history and it may
even randomize its action selection.

4



Shift to Probability Theory

The initial approach to training machines was to create a logical system where a hypothesis was de-
rived from logic theories that were programmed into the machine. Given an encoding of the known
background knowledge and a set of examples represented as a logical database of facts, an Induc-
tive Logic Programming system will derive a hypothesized logic program that entails all positive
and no negative examples. Though useful in processing formal systems, like in parsing natural lan-
guage structures, this approach of imitating actual human intelligence and tasks grows increasingly
ineffective as decision-making processes and hierarchical thinking becomes more complexly structured.

Inductive Logic Programming appeared to be the best approach at the time since both the computer
science field and artificial intelligence sub-field were founded on Boolean and symbolic logic. To add
to this, the hardware in the mid-to-late 1900s could not handle processing the extremely large data
sets required to get desirable levels of performance. However, more recently we have abandoned this
approach for statistical methods which involve deriving a hypothesis from patterns found in large
repositories of data, which is likely more similar to our own neural processes.

This shift from logical inference to statistical inference and the shift from Boolean logic and discrete
values to probability theory and floating point values has proven to be a very important change in
computation and modern applications, most notably in a programs ability to perform tasks which
include and exceed human capabilities. The following algorithm which will be examined in more
detail combines these sophisticated statistical methods for data analysis along with ingenious data
structures inherited from computer science. Even more interesting, these models were inspired by and
appear to accurately imitate the structure and function of synapses and biological neural networks.

Perceptrons and Artificial Neural Networks

Perceptrons were developed in the 1950s and 1960s by the scientist Frank Rosenblatt [5]. A percep-
tron neuron takes several binary inputs, x1, x2, . . . , and produces a single binary output. Rosenblatt
proposed a simple rule to compute the output by introducing weights, w1, w2, . . . , real numbers ex-
pressing the importance of the respective inputs to the output. The neuron’s output, 0 or 1, is then
determined by whether the weighted sum

∑
j wjxj is less than or greater than some threshold value.

Similar to the weights, the threshold is a real number which is a parameter of the neuron.

output =

{
0 if

∑
j wjxj ≤ threshold

1 if
∑

j wjxj > threshold
(1)

This notation is usually expressed as the dot product w · x ≡
∑

j wjxj where w and x are the vectors
corresponding to the weights and inputs respectively. Additionally, the threshold is moved to the
other side of the inequality and referred to as the perceptron’s bias, b ≡ −threshold. Introducing the
bias will later lead to further notational simplifications.

output =

{
0 if w · x+ b ≤ 0
1 if w · x+ b > 0

(2)

5



Figure 3: Perceptron Neuron
Figure 4: Neural Network

In a neural network of connected perceptron neurons, the latter layers of neurons can make a decisions
at a more complex and more abstract level than perceptrons in the preceding layers. In this way, a
many-layered network of perceptrons can engage in sophisticated decision making.

Despite the perceptrons being described as a method for weighing evidence used to make decisions,
they may also be used to compute the elementary logical functions AND, OR, and NAND used in
underlying computations. An implementation of NAND (the negation of AND) has important impli-
cation. The NAND gate is known as universal for computation - this means that we can use networks
of perceptrons to compute any logical function and thus preform any and all possible computations.

The desired behaviour of a network of neurons would be for a small change in weight to cause only a
small corresponding change in the output of the network. However a small change in the weights or
bias of any single perceptron in a given network may cause the output of that perceptron to completely
flip, say from 0 to 1. That flip may then cause the behaviour of the rest of the network to change
in some very complicated way. We may overcome this issue by introducing a new type of artificial
neuron called a sigmoid neuron. Sigmoid neurons are similar to perceptrons, but modified so that
small changes in their weights and bias cause only a small change in their output. This crucial change
will allow a network of sigmoid neurons to learn.

Just like a perceptron, the sigmoid neuron has inputs, x1, x2, . . . But instead of being a binary value 0
or 1, these inputs can also take on any decimal values between 0 and 1. Correspondingly, the output
is instead the real value output of a function σ(w + b), where σ is called the sigmoid function,

σ(z) ≡ 1

1 + e−z
. (3)

More explicitly, the output of a sigmoid neuron can be calculated with the following,

1

1 + exp(−
∑

j wjxj − b)
. (4)

The behaviour of a sigmoid neuron closely approximates a perceptron, that is: when z = w · x+ b is
large and positive the output from the sigmoid neuron is approximately 1, and when z = w · x+ b is
very negative the output is approximately 0. It is only when w · x+ b is of medium size that there is
a deviation from the perceptron model.

It is necessary to have an algorithm which lets us find weights and biases such that the output from
the network approximates y(x), the inferred function, for all training inputs x. To quantify our success
in achieving this goal we may define a cost function,

6



C(w, b) ≡ 1

2n

∑
x

‖y(x)− a‖2. (5)

Here, w denotes the collection of all weights in the network, b all the biases, n is the total number
of training inputs, a is the vector of outputs from the network when x is input, and the sum is over
all training inputs, x. C is known as the quadratic cost function and also referred to as the mean
squared error.

The aim of the training algorithm will be to minimize the cost C(w, b) as a function of the weights and
biases. This occurs when y(x), is approximately equal to the output and can be achieved by using an
algorithm known as gradient descent, taken from multivariable calculus, to find where C achieves its
global minimum. This will prove to be very difficult when there are many variables, which is typical
in neural networks where there may be billions of weights and biases.

Suppose that C is a function of m variables, v1, . . . , vm. Then the change ∆C in C produced by a
small change ∆v = (∆v1, . . . ,∆vm)T is

∆C ≈ ∇C ·∆v, (6)

and where the gradient ∇C is the vector,

∇C ≡
(
∂C

∂v1
, . . . ,

∂C

∂vm

)T

. (7)

Then suppose we choose

∆v = −η∇C, (8)

where η is a small, positive parameter known as the learning rate. Then Equation (6) tells us that
∆C ≈ −η∇C · ∇C = −η‖∇C‖2. Since ‖∇C‖2 ≥ 0, this guarantees that ∆C ≤ 0, i.e., C will always
decrease toward the global minimum.

The gradient descent algorithm will repeatedly compute the gradient ∇C, and then move in the
opposite direction. The goal is to use an update rule to find the weights wk and biases bl which
minimize the cost in Equation (5). The update rules can be defined as

wk → w′k = wk − η
∂C

∂wk

(9)

bl → b′l = bl − η
∂C

∂bl
. (10)

The neural networks being examined thus far have had the property in which the output from one
layer is used as input to the next layer and there are no loops in the network. These networks are
called feedforward neural networks. However, there are other models of artificial neural networks
called recurrent neural networks in which feedback loops are possible. The function of these models
is to have neurons which fire for some limited duration of time before becoming quiescent. This firing
can then stimulate other neurons, which may fire some time later for a limited duration, essentially
causing a cascade of neurons firing.

7



Applications

A few of the popular modern applications of machine learning are presented for the reader to examine
in more depth on their own time.

– Natural Language Processing

– Speech and Handwriting Recognition

– Computer Vision

– Self-driving Vehicles

– Medical Diagnosis

– Brain-computer interface

Conclusion

A good deal about the history, theory, and popular algorithms involved in machine learning has been
examined, yet there still remains substantially more that has not been investigated. Regardless, this
paper has hopefully served as a general introduction into the field and, more importantly, has piqued
an interest in what may prove to be one of the most influential technologies in human history.

References

[1] Saint Augustine of Hippo (1961). Confessions. Harmonds worth Middlesex, England: Penguin
Books.

[2] Wittgenstein, L. (1953) Philosophical Investigations, G.E.M. Anscombe and R. Rhees (eds.), Ox-
ford: Blackwell.

[3] Turing, A. (October 1950), Computing Machinery and Intelligence, Mind, LIX (236): 433-460

[4] Mitchell, T. (1997). Machine Learning. McGraw Hill.

[5] Rosenblatt, F. (1958). The Perceptron: A Probabilistic Model For Information Storage And Orga-
nization In The Brain. Psychological Review.

8


